Publications by authors named "BeiBei Xie"

Engineered immune cell therapy has proven to be a transformative cancer treatment despite the challenges of its prohibitive costs and manufacturing complexity. In this study, we propose a concise "lipid droplet fusion" strategy for engineering macrophages. Because of the integration of hydrophobic alkyl chains and π-conjugated structures, the mildly synthesized spC-conjugated covalent organic framework (COF) UM-101 induced lipid droplet fusion and metabolic reprogramming of macrophages, thus promoting their antitumor classical activation.

View Article and Find Full Text PDF

Despite the development of various controlled release systems for antitumor therapies, off-target side effects remain a persistent challenge. In situ therapeutic synthesis from biocompatible substances offers a safer and more precise alternative. This study presents a hypoxia-initiated supramolecular free radical system capable of inducing intracellular polymerization, thereby disrupting the cytoskeleton and organelles within 4T1 cells.

View Article and Find Full Text PDF

Intracellular Ca nanogenerators, such as calcium carbonate, calcium peroxide, and calcium phosphate nanoparticles, have shown promise in calcium overload-mediated tumor therapy. However, their effectiveness is often hampered by poor targeting, low accumulation, and limited penetration into tumor cells, leading to suboptimal therapeutic outcomes. This strategy aims to achieve synergistic Ca overload and immunotherapy of tumors.

View Article and Find Full Text PDF
Article Synopsis
  • Limited research has been conducted on how the structure of quaternary ammonium salts (QAS) influences the electrostatic attraction and reactivity of cationic cotton, affecting dye behavior.
  • Increasing the alkyl chain length of QAS from 4 to 18 carbon atoms significantly enhances the positive charge on modified cotton, improving electrostatic attraction to reactive dyes, but slows molecular mobility, which can hinder dye diffusion.
  • Cationic cotton treated with a specific QAS (CT-8) demonstrates high levels of dye uptake (91.84%), optimum K/S values (13.10), and effective dye fixation (88.38%), indicating better dyeing performance.
View Article and Find Full Text PDF

For the conventional type-II heterojunction photocatalyst, their photocatalytic activity is affected by the limited separation efficiency of electron-hole pairs, exquisitely designed heterojunction photocatalysts are highly prospective materials for inducing charge transfer efficiently. Typically, enhancing the separation efficiency of electron-hole pairs in photocatalysts has been a formidable challenge. Here, the hollow mesoporous TiO (H-TiO), the bulk g-CN (B-CN), and g-CN with bamboo shape (BS-CN) are prepared by simple processes.

View Article and Find Full Text PDF

The cell nucleus serves as the pivotal command center of living cells, and delivering therapeutic agents directly into the nucleus can result in highly efficient anti-tumor eradication of cancer cells. However, nucleus-targeting drug delivery is very difficult due to the presence of numerous biological barriers. Here, three antitumor drugs (DNase I, ICG: indocyanine green, and THP: pirarubicin) were sequentially triggered protein self-assembly to produce a nucleus-targeting and programmed responsive multi-drugs delivery system (DIT).

View Article and Find Full Text PDF

Membrane-camouflaged nanomedicines often suffer from reduced efficacy caused by membrane protein disintegration and spatial disorder caused by separation and reassembly of membrane fragments during the coating process. Here we show that intracellularly gelated macrophages (GMs) preserve cell membrane structures, including protein content, integration and fluidity, as well as the membrane lipid order. Consequently, in our testing GMs act as cellular sponges to efficiently neutralize various inflammatory cytokines via receptor-ligand interactions, and serve as immune cell-like carriers to selectively bind inflammatory cells in culture medium, even under a flow condition.

View Article and Find Full Text PDF

Nanomedicines based on ferroptosis may be effective strategies for cancer therapy due to their unique inducing mechanism. However, the challenges, including non-target distribution, poor accumulation and retention of nanomedicine, have a profound impact on the effectiveness of drug delivery. Here, we developed cancer cell membrane (CCM)-coated FeO nanoparticles (NPs) modified with supramolecular precursors and loaded with sulfasalazine (SAS) for breast cancer therapy.

View Article and Find Full Text PDF

The variable amplification efficiency of each thermal cycle of qPCR obeys the Poisson distribution, and the qPCR system dynamically changes, so there must be a detection error in its quantitative analysis. Here, more than 20 cycles of the linear amplification of qPCR can be produced as the BSA hydrogel is introduced to achieve the controlled release of Taq DNA polymerase. There is a significant negative correlation between the slope of linear amplification and values ( = -0.

View Article and Find Full Text PDF

Although various ferroptosis inducers including magnetic nanoparticles (Fe O ) and iron-organic frameworks have been applied in cancer treatment, the mild immunogenicity, low targeting efficiency to the tumor, and poor tissue penetration have limited the therapeutic efficacy. Herein, a supramolecularly engineered conjugate between living bacteria (facultative anaerobic Salmonella typhimurium VNP20009, VNP) and cancer cell membranes-coated Fe O nanoparticles is developed for improving targeted delivery of Fe O nanoparticles into the tumor tissue and for synergistic ferroptosis and immunotherapy of tumor. The enhanced ferroptosis induced by both Fe O nanoparticles and the loaded ferroptosis inducing agent (sulfasalazine (SAS)) effectively inhibits tumor growth and generates immune response via immunogenic cell death (ICD).

View Article and Find Full Text PDF

Chemotherapy based on molecular drugs remains the most frequently used approach for the therapy of tumors, however their poor specificity, severe side effects and tumor resistance often seriously hinder their applications. It is therefore desirable to develop a new, alternative therapeutic strategy for tumor treatment without traditional chemotherapeutic drugs. Herein, we report a drug-free tumor therapy approach involving spermine (SPM)-responsive intracellular biomineralization in tumor cells.

View Article and Find Full Text PDF

Drug-resistant infections caused by intracellular bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), which are often hidden inside macrophages, pose a significant threat to human health. Various nanomedicines have been developed to combat intracellular MRSA; however, their poor uptake and fast clearance from macrophages often result in insufficient enrichment of antibacterial agents intracellularly, leading to low antibacterial efficacy. Here, we developed bacterial membrane-coated mesoporous SiO nanoparticles (MSN) loaded with vancomycin (Van), a classic antibiotic.

View Article and Find Full Text PDF

Combination of chemotherapy and photothermal therapy (PTT) is an effective way for the treatment of cancer. Graphene oxide (GO) with a large specific surface area and strong near-infrared (NIR) absorbance have been widely used as both the chemotherapeutic carriers and photothermal agents. The smaller lateral size and higher oxidation degree of GO corresponding to better dispersion in water and lower cytotoxicity.

View Article and Find Full Text PDF

Sonodynamic therapy (SDT) is a noninvasive technique for local antitumor treatment; however, its clinical application is often limited by the low tumor accumulation of SDT agents, tumor's hypoxic microenvironment, and cytoprotective effects of autophagy. To address these issues, herein we developed surface-engineered chlorella (Chl, a green algae) as a targeted drug carrier and sustainable oxygen supplier (via photosynthesis) for significantly improved SDT via hypoxia alleviation as well as autophagy inhibition of chloroquine phosphate. In this design, the macrophage membrane was coated onto Chl to form macrophage-mimetic Chl (MChl) to increase its biocompatibility and targeted tumor accumulation driven by the inflammatory-homing effects of macrophage membranes.

View Article and Find Full Text PDF

Programmed response, carrier-free, and multimodal therapy drug delivery systems (DDS) are promising solutions to multidirectional cytotoxic effects, inefficient antitumor, and severe side effects for cancer therapy. Here, three widely used clinical drugs, interferon α1b (IFNα1b), indocyanine green (ICG), and doxorubicin (DOX), were prepared into carrier-free DDS IFNα1b-ICG-DOX (IID) by a simple one-step method without additional any reagents. IID can achieve smart and programmed DDS by combining low pH and near-infrared (NIR) light stimuli-responsive controlled release.

View Article and Find Full Text PDF

Current pharmacological treatments of atherosclerosis often target either cholesterol control or inflammation management, to inhibit atherosclerotic progression, but cannot lead to direct plaque lysis and atherosclerotic regression, partly due to the poor accumulation of medicine in the atherosclerotic plaques. Due to enhanced macrophage recruitment during atheromatous plaque progression, a macrophage-liposome conjugate was facilely constructed for targeted anti-atherosclerosis therapy via synergistic plaque lysis and inflammation alleviation. Endogenous macrophage is utilized as drug-transporting cell, upon membrane-modification with a β-cyclodextrin (β-CD) derivative to form β-CD decorated macrophage (CD-MP).

View Article and Find Full Text PDF

Improving the precise accumulation and retention of nanomedicines in tumor cells is one of the keys to effective therapy of tumors. Herein, supramolecular peptides capped Au nanocages (AuNCs) that may self-aggregate into micron-sized clusters intracellularly in response to spermine (SPM), leading to specific accumulation and retention of AuNCs in SPM-overexpressed tumor cells, are developed. In this design, polydopamine (PDA) is in situ coated on the surface of AuNCs with doxorubicin (DOX) encapsulated.

View Article and Find Full Text PDF

Cell-based drug carriers are mostly prepared in vitro, which may negatively affect the physiological functions of cells, and induce possible immune rejections when applied to different individuals. In addition, the immunosuppressive tumor microenvironment limits immune cell-mediated delivery. Here, we report an in vivo strategy to construct cell-based nanomedicine carriers, where bacteria-mimetic gold nanoparticles (GNPs) are intravenously injected, selectively phagocytosed by phagocytic immune cells, and subsequently self-assemble into sizable intracellular aggregates via host-guest interactions.

View Article and Find Full Text PDF

In this work, we developed a new approach for fabricating hollow and porous nitrogen doped carbon nanoballoons loading AuNPs (Au-NC-NBs) with a large specific surface area, a high N and Au content. The surface-enhanced Raman scattering (SERS) aptasensor based on the resulting Au-NC-NBs possess a wider linear range (10 to 10 cells/mL), a lower detection limit (3 cells/mL), better selectivity for detecting bacteria than previously reported sensors. Importantly, Au-NC-NBs SERS aptasensor also exhibits excellent performance for detecting bacteria in the real food and biological samples.

View Article and Find Full Text PDF

Benefiting from their unique advantages, including reversibly switchable structures, good biocompatibility, facile functionalization, and sensitive response to biological stimuli, supramolecular biomaterials have been widely applied in biomedicine. In this review, the representative achievements and trends in the design of supramolecular biomaterials (mainly those derived from biomacromolecules) with specific macromolecules including peptides, deoxyribonucleic acid, and polysaccharides, as well as their applications in bio-imaging and imaging-guided therapy are summarized. This review will serve as an important summary and "go for" reference for explorations of the applications of supramolecular biomaterials in bio-imaging and image-guided therapy, and will promote the development of supramolecular chemistry as an emerging interdisciplinary research area.

View Article and Find Full Text PDF

Pyroptosis is an inflammation-dependent and self-cascade amplifying type of programmed cell death, serving as an effective means for activating the local immune response and improving the anticancer efficacy. As the effector of pyroptosis, gasdermin-E (GSDME) is silenced in most tumor cells. The gene silencing can be reversed by DNA demethylation, but the systemic side effects and toxicity of chemotherapeutic agents are inevitable.

View Article and Find Full Text PDF

In order to effectively analyze the fluorescence distribution of sea surface oil film detected by laser-induced fluorescence (LIF), a novel, to the best of our knowledge, simulation model of the oil film fluorescence was established based on the Monte Carlo method. Using this simulation model, the fluorescence distribution of oil film with different thickness in emission direction and spatial distribution were analyzed. Based on the fluorescence mechanism model of oil film detected by LIF, a criterion for the LIF system calibration, i.

View Article and Find Full Text PDF

Background: There has been increasing evidence for the vital role played by gap junction protein beta-1 (GJB1) in ovarian cancer (OC) and for the possibility of this protein serving as a therapeutic target. However, the detailed mechanism of GJB1 in OC has not yet been clearly determined. The current study aimed to establish the molecular mechanisms of the involvement of GJB1 in OC and to further predict potential drugs targeting this protein.

View Article and Find Full Text PDF