ACS Appl Mater Interfaces
April 2024
Compressibility is a fundamental property of all materials. For fluids, that is, gases and liquids, compressibility forms the basis of technologies such as pneumatics and hydraulics and determines basic phenomena such as the propagation of sound and shock waves. In contrast to gases, liquids are almost incompressible.
View Article and Find Full Text PDFThe regulation of mitochondria function and health is a central node in tissue maintenance, ageing as well as the pathogenesis of various diseases. However, the maintenance of an active mitochondrial functional state and its quality control mechanisms remain incompletely understood. By studying mice with a mitochondria-targeted reporter that shifts its fluorescence from "green" to "red" with time (MitoTimer), we found MitoTimer fluorescence spectrum was heavily dependent on the oxidative metabolic state in the skeletal muscle fibers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2021
We assess the potential for formulating a porous liquid that could be used as a selective solvent for the separation of ethane and ethene. Ethane-ethene separation is performed on very large scales by cryogenic distillation, but this uses large amounts of energy. Solvents that are selective to ethane or ethene could potentially enable more efficient liquid-based separation processes to be developed, but to date such solvents have been elusive.
View Article and Find Full Text PDFWe describe a series of Type 3 porous liquids, denoted "T3PLs", based on a wide range of microporous solids including MOFs, zeolites and a porous organic polymer (PAF-1). These solids are dispersed in various non-ionic liquid phases (including silicone oils, triglyceride oils, and polyethylene glycols) which have a range of structures and properties, and that are in many cases sterically excluded from the pores of the solids. Several stable dispersions with high gas uptakes are obtained.
View Article and Find Full Text PDFThe neuropeptides arginine vasopressin (Avp) and vasoactive intestinal polypeptide (Vip) are critical for the communication and coupling of suprachiasmatic nucleus neurons, which organize daily rhythms of physiology and behavior in mammals. However, how these peptides are regulated remains uncharacterized. We found that heterogeneous nuclear ribonucleoprotein U (hnRNP U) is essential for the expression of Avp and Vip.
View Article and Find Full Text PDFBody weight regain often causes failure of obesity therapies while the underlying mechanism remains largely unknown. In this study, we report that immune cells, especially CD4+ T cells, mediate the 'memory' of previous obese status. In a weight gain-loss-regain model, we found that C57BL/6J mice with an obesity history showed a much faster rate of body weight regain.
View Article and Find Full Text PDFBone was reported as a crucial organ for regulating glucose homeostasis. In this study, we found that Phex mutant mice (PUG), a model of human X-linked hypophosphatemic rickets (XLH), displayed metabolic abnormality in addition to abnormal phosphate homeostasis, skeletal deformity and growth retardation. Glucose tolerance was elevated with enhanced insulin sensitivity in PUG, though circulating insulin level decreased.
View Article and Find Full Text PDFMaged1 is a member of the type II melanoma antigen (MAGE) family of proteins, which is highly conserved in the brain between mouse and human. Recently, Maged1 has been reported to be involved in depression and impaired sexual behavior. However, the role of Maged1 in learning and memory remains unknown.
View Article and Find Full Text PDF