Entropy (Basel)
December 2022
This work strives to better understand how the entanglement in an open quantum system, here represented by two coupled Brownian oscillators, is affected by a nonMarkovian environment (with memories), here represented by two independent baths each oscillator separately interacts with. We consider two settings, a 'symmetric' configuration wherein the parameters of both oscillators and their baths are identical, and an 'asymmetric' configuration wherein they are different, in particular, a 'hybrid' configuration, where one of the two coupled oscillators interacts with a nonMarkovian bath and the other with a Markovian bath. Upon finding the solutions to the Langevin equations governing the system dynamics and the evolution of the covariance matrix elements entering into its entanglement dynamics, we ask two groups of questions: (Q1) Which time regime does the bath's nonMarkovianity benefit the system's entanglement most? The answers we get from detailed numerical studies suggest that (A1) For an initially entangled pair of oscillators, we see that in the intermediate time range, the duration of entanglement is proportional to the memory time, and it lasts a fraction of the relaxation time, but at late times when the dynamics reaches a steady state, the value of the symplectic eigenvalue of the partially transposed covariance matrix barely benefit from the bath nonMarkovianity.
View Article and Find Full Text PDFThe National Aeronautics and Space Administration's Deep Space Quantum Link mission concept enables a unique set of science experiments by establishing robust quantum optical links across extremely long baselines. Potential mission configurations include establishing a quantum link between the Lunar Gateway moon-orbiting space station and nodes on or near the Earth. This publication summarizes the principal experimental goals of the Deep Space Quantum Link.
View Article and Find Full Text PDFThermodynamic uncertainty relations (TURs) represent one of the few broad-based and fundamental relations in our toolbox for tackling the thermodynamics of nonequilibrium systems. One form of TUR quantifies the minimal energetic cost of achieving a certain precision in determining a nonequilibrium current. In this initial stage of our research program, our goal is to provide the quantum theoretical basis of TURs using microphysics models of linear open quantum systems where it is possible to obtain exact solutions.
View Article and Find Full Text PDFThermodynamic uncertainty principles make up one of the few rare anchors in the largely uncharted waters of nonequilibrium systems, the fluctuation theorems being the more familiar. In this work we aim to trace the uncertainties of thermodynamic quantities in nonequilibrium systems to their quantum origins, namely, to the quantum uncertainty principles. Our results enable us to make this categorical statement: For Gaussian systems, thermodynamic functions are functionals of the function, which is always non-negative for quantum systems, but not necessarily so for classical systems.
View Article and Find Full Text PDFIn recent years an increasing number of papers have attempted to mimic or supplant quantum field theory in discussions of issues related to gravity by the tools and through the perspective of quantum information theory, often in the context of alternative quantum theories. In this article, we point out three common problems in such treatments. First, we show that the notion of interactions mediated by an information channel is not, in general, equivalent to the treatment of interactions by quantum field theory.
View Article and Find Full Text PDFIn this paper we examine some foundational issues of a class of quantum engines where the system consists of a single quantum parametric oscillator, operating in an Otto cycle consisting of four stages of two alternating phases: the isentropic phase is detached from any bath (thus a closed system) where the natural frequency of the oscillator is changed from one value to another, and the isothermal phase where the system (now rendered open) is put in contact with one or two squeezed baths of different temperatures, whose nonequilibrium dynamics follows the Hu-Paz-Zhang (HPZ) master equation for quantum Brownian motion. The HPZ equation is an exact non-Markovian equation which preserves the positivity of the density operator and is valid for (1) all temperatures, (2) arbitrary spectral density of the bath, and (3) arbitrary coupling strength between the system and the bath. Taking advantage of these properties we examine some key foundational issues of theories of quantum open and squeezed systems for these two phases of the quantum Otto engines.
View Article and Find Full Text PDFDensity contrasts in the universe are governed by scalar cosmological perturbations which, when expressed in terms of gauge-invariant variables, contain a classical component from scalar metric perturbations and a quantum component from inflaton field fluctuations. It has long been known that the effect of cosmological expansion on a quantum field amounts to squeezing. Thus, the entropy of cosmological perturbations can be studied by treating them in the framework of squeezed quantum systems.
View Article and Find Full Text PDFIdentifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this.
View Article and Find Full Text PDFWhereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operatorvalued) stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional.
View Article and Find Full Text PDF