In this study, experimental demonstration of a static Fourier transform spectrometer (static-FTS), based on division of the spectrum into multiple narrowband signals, is presented. The bandpass sampling technique used in this novel spectrometer solves the Nyquist sampling rate limitations and enables recording of wideband spectrum in high resolution. The proposed spectrometer not only has the potential of operating in a wide spectral range, but also has a resolution potential better than 2 cm.
View Article and Find Full Text PDFHere we show the capability of copper oxide (CuO) nanoparticles formed on copper (Cu) electrodes by the electrolysis as a real time active substrate for surface enhanced Raman scattering (SERS). We have experimentally found that using just the ultra pure water as the electrolyte and the Cu electrodes, ions are extracted from the copper anode form copper oxide nanoparticles on the anode surface in matter of minutes. Average particle size on the anode reaches to 100 nm in ninety seconds and grows to about 300 nm in five minutes.
View Article and Find Full Text PDFIn this work a new broadband static Fourier transform spectrometer (static-FTS) configuration based on the division of the spectrum into multiple narrow-bands is proposed. This configuration not only decreases the spectrometer size but also allows operation in the traditional spectrometer wavelength range, namely, 400 nm-1100 nm with 1 cm or better resolution. This technique solves the Nyquist sampling rate issue and enables us to record high resolution spectrums with regular CCDs.
View Article and Find Full Text PDF