Publications by authors named "Behzad Oskouei"

Importance: Whether culture-expanded mesenchymal stem cells or whole bone marrow mononuclear cells are safe and effective in chronic ischemic cardiomyopathy is controversial.

Objective: To demonstrate the safety of transendocardial stem cell injection with autologous mesenchymal stem cells (MSCs) and bone marrow mononuclear cells (BMCs) in patients with ischemic cardiomyopathy.

Design, Setting, And Patients: A phase 1 and 2 randomized, blinded, placebo-controlled study involving 65 patients with ischemic cardiomyopathy and left ventricular (LV) ejection fraction less than 50% (September 1, 2009-July 12, 2013).

View Article and Find Full Text PDF

The presence of tissue specific precursor cells is an emerging concept in organ formation and tissue homeostasis. Several progenitors are described in the kidneys. However, their identity as a true stem cell remains elusive.

View Article and Find Full Text PDF

Whereas cardiac-derived c-kit(+) stem cells (CSCs) and bone marrow-derived mesenchymal stem cells (MSCs) are undergoing clinical trials testing safety and efficacy as a cell-based therapy, the relative therapeutic and biologic efficacy of these two cell types is unknown. We hypothesized that human CSCs have greater ability than MSCs to engraft, differentiate, and improve cardiac function. We compared intramyocardial injection of human fetal CSCs (36,000) with two doses of adult MSCs (36,000 and 1,000,000) or control (phosphate buffered saline) in nonobese diabetic/severe combined immune deficiency mice after coronary artery ligation.

View Article and Find Full Text PDF

Rationale: Cardiac myocyte hypertrophy is the main compensatory response to chronic stress on the heart. p90 ribosomal S6 kinase (RSK) family members are effectors for extracellular signal-regulated kinases that induce myocyte growth. Although increased RSK activity has been observed in stressed myocytes, the functions of individual RSK family members have remained poorly defined, despite being potential therapeutic targets for cardiac disease.

View Article and Find Full Text PDF

Cardiac injury induces myocardial expression of the thyroid hormone inactivating type 3 deiodinase (D3), which in turn dampens local thyroid hormone signaling. Here, we show that the D3 gene (Dio3) is a tissue-specific imprinted gene in the heart, and thus, heterozygous D3 knockout (HtzD3KO) mice constitute a model of cardiac D3 inactivation in an otherwise systemically euthyroid animal. HtzD3KO newborns have normal hearts but later develop restrictive cardiomyopathy due to cardiac-specific increase in thyroid hormone signaling, including myocardial fibrosis, impaired myocardial contractility, and diastolic dysfunction.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is a public health epidemic that increases risk of death due to cardiovascular disease. Left ventricular hypertrophy (LVH) is an important mechanism of cardiovascular disease in individuals with CKD. Elevated levels of FGF23 have been linked to greater risks of LVH and mortality in patients with CKD, but whether these risks represent causal effects of FGF23 is unknown.

View Article and Find Full Text PDF

Although there is tremendous interest in stem cell (SC)-based therapies for cardiomyopathy caused by chronic myocardial infarction, many unanswered questions regarding the best approach remain. The TAC-HFT study is a phase I/II randomized, double-blind, placebo-controlled trial designed to address several of these questions, including the optimal cell type, delivery technique, and population. This trial compares autologous mesenchymal SCs (MSCs) and whole bone marrow mononuclear cells (BMCs).

View Article and Find Full Text PDF

Rationale: The regenerative potential of the heart is insufficient to fully restore functioning myocardium after injury, motivating the quest for a cell-based replacement strategy. Bone marrow-derived mesenchymal stem cells (MSCs) have the capacity for cardiac repair that appears to exceed their capacity for differentiation into cardiac myocytes.

Objective: Here, we test the hypothesis that bone marrow derived MSCs stimulate the proliferation and differentiation of endogenous cardiac stem cells (CSCs) as part of their regenerative repertoire.

View Article and Find Full Text PDF

Stem cell transplantation holds great promise for the treatment of myocardial infarction injury. We recently described the embryonic stem cell-derived cardiac progenitor cells (CPCs) capable of differentiating into cardiomyocytes, vascular endothelium, and smooth muscle. In this study, we hypothesized that transplanted CPCs will preserve function of the infarcted heart by participating in both muscle replacement and neovascularization.

View Article and Find Full Text PDF

The mechanism(s) regulating nitric oxide synthase-1 (NOS1) localization within the cardiac myocyte in health and disease remains unknown. Here we tested the hypothesis that the PDZ-binding domain interaction between CAPON (carboxy-terminal PDZ ligand of NOS1), a NOS1 adaptor protein and NOS1, contribute to NOS1 localization in specific organelles within cardiomyocytes. Ventricular cardiomyocytes and whole heart homogenates were isolated from sham and post-myocardial infarction (MI) wild-type (C57BL/6) and NOS1(-/-) female mice for quantification of CAPON protein expression levels.

View Article and Find Full Text PDF

The mechanism(s) underlying cardiac reparative effects of bone marrow-derived mesenchymal stem cells (MSC) remain highly controversial. Here we tested the hypothesis that MSCs regenerate chronically infarcted myocardium through mechanisms comprising long-term engraftment and trilineage differentiation. Twelve weeks after myocardial infarction, female swine received catheter-based transendocardial injections of either placebo (n = 4) or male allogeneic MSCs (200 million; n = 6).

View Article and Find Full Text PDF

The underlying mechanism(s) of improved left ventricular function (LV) due to mesenchymal stem cell (MSC) administration after myocardial infarction (MI) remains highly controversial. Myocardial regeneration and neovascularization, which leads to increased tissue perfusion, are proposed mechanisms. Here we demonstrate that delivery of MSCs 3 days after MI increased tissue perfusion in a manner that preceded improved LV function in a porcine model.

View Article and Find Full Text PDF

Objectives: The purpose of this study was to test the hypothesis, with noninvasive multimodality imaging, that allogeneic mesenchymal stem cells (MSCs) produce and/or stimulate active cardiac regeneration in vivo after myocardial infarction (MI).

Background: Although intramyocardial injection of allogeneic MSCs improves global cardiac function after MI, the mechanism(s) underlying this phenomenon are incompletely understood.

Methods: We employed magnetic resonance imaging (MRI) and multi-detector computed tomography (MDCT) imaging in MSC-treated pigs (n = 10) and control subjects (n = 12) serially for a 2-month period after anterior MI.

View Article and Find Full Text PDF