Operando visualization of interfacial pH is crucial, yet challenging in electrochemical processes. Herein, we report the fabrication and utilization of ratiometric, fluorescent pH-sensitive nanosensors for operando quantification of fast-dynamic, interfacial pH changes in electrochemical processes and environments where unprotected fluorescent dyes would be degraded. Spatio-temporal pH changes were detected using an electrochemically coupled laser scanning confocal microscope (EC-LSCM) during the electrocoagulation treatment of model and field samples of oil-sands-produced water.
View Article and Find Full Text PDFAnode fouling is one of the key limiting factors to the widespread application of electrocoagulation (EC) for treatment of different types of contaminated water. Promising mitigation strategy to fouling is to operate the process under polarity reversal (PR) instead of direct current (DC). However, the PR operation comes at the cost of process complexity due to the alternation of electrochemical and chemical reactions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2019
In aqueous electrochemical processes, the pH evolves spatially and temporally, and often dictates the process performance. Herein, a new method for the in-operando monitoring of pH distribution in an electrochemical cell is demonstrated. A combination of pH-sensitive fluorescent dyes, encompassing a wide pH range from ≈1.
View Article and Find Full Text PDF