Publications by authors named "Behtouei M"

The breakthrough provided by plasma-based accelerators enabled unprecedented accelerating fields by boosting electron beams to gigaelectronvolt energies within a few centimeters [1-4]. This, in turn, allows the realization of ultracompact light sources based on free-electron lasers (FELs) [5], as demonstrated by two pioneering experiments that reported the observation of self-amplified spontaneous emission (SASE) driven by plasma-accelerated beams [6,7]. However, the lack of stability and reproducibility due to the intrinsic nature of the SASE process (whose amplification starts from the shot noise of the electron beam) may hinder their effective implementation for user purposes.

View Article and Find Full Text PDF
Article Synopsis
  • Plasma-based technology can accelerate electron beams to ultra-relativistic speeds over short distances, enabling compact particle accelerators that could fit on a tabletop.
  • These accelerators have the potential to power free-electron lasers (FELs), which produce precise light pulses for investigating matter at the sub-atomic level.
  • A recent experiment demonstrated successful FEL lasing using a 3-cm particle-beam-driven plasma accelerator, confirming the viability and high quality of this technology for future user-oriented applications.
View Article and Find Full Text PDF