Publications by authors named "Behtash Babadi"

Characterizing neuronal responses to natural stimuli remains a central goal in sensory neuroscience. In auditory cortical neurons, the stimulus selectivity of elicited spiking activity is summarized by a spectrotemporal receptive field (STRF) that relates neuronal responses to the stimulus spectrogram. Though effective in characterizing primary auditory cortical responses, STRFs of non-primary auditory neurons can be quite intricate, reflecting their mixed selectivity.

View Article and Find Full Text PDF

Mass spectrometry imaging (MSI) is a powerful scientific tool for understanding the spatial distribution of biochemical compounds in tissue structures. In this paper, we introduce three novel approaches in MSI data processing to perform the tasks of data augmentation, feature ranking, and image registration. We use these approaches in conjunction with non-negative matrix factorization (NMF) to resolve two of the biggest challenges in MSI data analysis, namely: 1) the large file sizes and associated computational resource requirements and 2) the complexity of interpreting the very high dimensional raw spectral data.

View Article and Find Full Text PDF

Central in the study of population codes, coordinated ensemble spiking activity is widely observable in neural recordings with hypothesized roles in robust stimulus representation, interareal communication, and learning and memory formation. Model-free measures of synchrony characterize coherent pairwise activity but not higher-order interactions, a limitation transcended by statistical models of ensemble spiking activity. However, existing model-based analyses often impose assumptions about the relevance of higher-order interactions and require repeated trials to characterize dynamics in the correlational structure of ensemble activity.

View Article and Find Full Text PDF

Granger causality is among the widely used data-driven approaches for causal analysis of time series data with applications in various areas including economics, molecular biology, and neuroscience. Two of the main challenges of this methodology are: 1) over-fitting as a result of limited data duration, and 2) correlated process noise as a confounding factor, both leading to errors in identifying the causal influences. Sparse estimation via the LASSO has successfully addressed these challenges for parameter estimation.

View Article and Find Full Text PDF

Plasticity and homeostatic mechanisms allow neural networks to maintain proper function while responding to physiological challenges. Despite previous work investigating morphological and synaptic effects of brain-derived neurotrophic factor (BDNF), the most prevalent growth factor in the central nervous system, how exposure to BDNF manifests at the network level remains unknown. Here we report that BDNF treatment affects rodent hippocampal network dynamics during development and recovery from glutamate-induced excitotoxicity in culture.

View Article and Find Full Text PDF

Measures of functional connectivity have played a central role in advancing our understanding of how information is transmitted and processed within the brain. Traditionally, these studies have focused on identifying redundant functional connectivity, which involves determining when activity is similar across different sites or neurons. However, recent research has highlighted the importance of also identifying synergistic connectivity-that is, connectivity that gives rise to information not contained in either site or neuron alone.

View Article and Find Full Text PDF

Central in the study of population codes, coordinated ensemble spiking activity is widely observable in neural recordings with hypothesized roles in robust stimulus representation, interareal communication, and learning and memory formation. Model-free measures of synchrony characterize coherent pairwise activity but not higher-order interactions, a limitation transcended by statistical models of ensemble spiking activity. However, existing model-based analyses often impose assumptions about the relevance of higher-order interactions and require repeated trials to characterize dynamics in the correlational structure of ensemble activity.

View Article and Find Full Text PDF

Cortical ischaemic strokes result in cognitive deficits depending on the area of the affected brain. However, we have demonstrated that difficulties with attention and processing speed can occur even with small subcortical infarcts. Symptoms appear independent of lesion location, suggesting they arise from generalized disruption of cognitive networks.

View Article and Find Full Text PDF

Identifying the directed connectivity that underlie networked activity between different cortical areas is critical for understanding the neural mechanisms behind sensory processing. Granger causality (GC) is widely used for this purpose in functional magnetic resonance imaging analysis, but there the temporal resolution is low, making it difficult to capture the millisecond-scale interactions underlying sensory processing. Magnetoencephalography (MEG) has millisecond resolution, but only provides low-dimensional sensor-level linear mixtures of neural sources, which makes GC inference challenging.

View Article and Find Full Text PDF

Cortical processing of task-relevant information enables recognition of behaviorally meaningful sensory events. It is unclear how task-related information is represented within cortical networks by the activity of individual neurons and their functional interactions. Here, we use two-photon imaging to record neuronal activity from the primary auditory cortex of mice during a pure-tone discrimination task.

View Article and Find Full Text PDF

Neuronal activity correlations are key to understanding how populations of neurons collectively encode information. While two-photon calcium imaging has created a unique opportunity to record the activity of large populations of neurons, existing methods for inferring correlations from these data face several challenges. First, the observations of spiking activity produced by two-photon imaging are temporally blurred and noisy.

View Article and Find Full Text PDF

Estimating the latent dynamics underlying biological processes is a central problem in computational biology. State-space models with Gaussian statistics are widely used for estimation of such latent dynamics and have been successfully utilized in the analysis of biological data. Gaussian statistics, however, fail to capture several key features of the dynamics of biological processes (e.

View Article and Find Full Text PDF

In the last few years, a large number of experiments have been focused on exploring the possibility of using non-invasive techniques, such as electroencephalography (EEG) and magnetoencephalography (MEG), to identify auditory-related neuromarkers which are modulated by attention. Results from several studies where participants listen to a story narrated by one speaker, while trying to ignore a different story narrated by a competing speaker, suggest the feasibility of extracting neuromarkers that demonstrate enhanced phase locking to the attended speech stream. These promising findings have the potential to be used in clinical applications, such as EEG-driven hearing aids.

View Article and Find Full Text PDF

Characterizing the neural dynamics underlying sensory processing is one of the central areas of investigation in systems and cognitive neuroscience. Neuroimaging techniques such as magnetoencephalography (MEG) and Electroencephalography (EEG) have provided significant insights into the neural processing of continuous stimuli, such as speech, thanks to their high temporal resolution. Existing work in the context of auditory processing suggests that certain features of speech, such as the acoustic envelope, can be used as reliable linear predictors of the neural response manifested in M/EEG.

View Article and Find Full Text PDF

Extracting the spectral representations of neural processes that underlie spiking activity is key to understanding how brain rhythms mediate cognitive functions. While spectral estimation of continuous time-series is well studied, inferring the spectral representation of latent non-stationary processes based on spiking observations is challenging due to the underlying nonlinearities that limit the spectrotemporal resolution of existing methods. In this paper, we address this issue by developing a multitaper spectral estimation methodology that can be directly applied to multivariate spiking observations in order to extract the semi-stationary spectral density of the latent non-stationary processes that govern spiking activity.

View Article and Find Full Text PDF

Natural sounds have rich spectrotemporal dynamics. Spectral information is spatially represented in the auditory cortex (ACX) via large-scale maps. However, the representation of temporal information, e.

View Article and Find Full Text PDF

In a complex auditory scene comprising multiple sound sources, humans are able to target and track a single speaker. Recent studies have provided promising algorithms to decode the attentional state of a listener in a competing-speaker environment from non-invasive brain recordings sun exhibit poor performance at temporal resolutions suitable for real-time implementation, which hinders their utilization in emerging applications such as smart hearich as electroencephalography (EEG). These algorithms require substantial training datasets and ofteng aids.

View Article and Find Full Text PDF

Humans are able to identify and track a target speaker amid a cacophony of acoustic interference, an ability which is often referred to as the cocktail party phenomenon. Results from several decades of studying this phenomenon have culminated in recent years in various promising attempts to decode the attentional state of a listener in a competing-speaker environment from non-invasive neuroimaging recordings such as magnetoencephalography (MEG) and electroencephalography (EEG). To this end, most existing approaches compute correlation-based measures by either regressing the features of each speech stream to the M/EEG channels (the decoding approach) or vice versa (the encoding approach).

View Article and Find Full Text PDF

Quantifying the functional relations between the nodes in a network based on local observations is a key challenge in studying complex systems. Most existing time series analysis techniques for this purpose provide static estimates of the network properties, pertain to stationary Gaussian data, or do not take into account the ubiquitous sparsity in the underlying functional networks. When applied to spike recordings from neuronal ensembles undergoing rapid task-dependent dynamics, they thus hinder a precise statistical characterization of the dynamic neuronal functional networks underlying adaptive behavior.

View Article and Find Full Text PDF

Sensory detection tasks enhance representations of behaviorally meaningful stimuli in primary auditory cortex (A1). However, it remains unclear how A1 encodes decision-making. Neurons in A1 layer 2/3 (L2/3) show heterogeneous stimulus selectivity and complex anatomical connectivity, and receive input from prefrontal cortex.

View Article and Find Full Text PDF

Subcortical structures play a critical role in brain function. However, options for assessing electrophysiological activity in these structures are limited. Electromagnetic fields generated by neuronal activity in subcortical structures can be recorded noninvasively, using magnetoencephalography (MEG) and electroencephalography (EEG).

View Article and Find Full Text PDF

Objective: Electroencephalography (EEG) and magnetoencephalography noninvasively record scalp electromagnetic fields generated by cerebral currents, revealing millisecond-level brain dynamics useful for neuroscience and clinical applications. Estimating the currents that generate these fields, i.e.

View Article and Find Full Text PDF

Objective: Common biological measurements are in the form of noisy convolutions of signals of interest with possibly unknown and transient blurring kernels. Examples include EEG and calcium imaging data. Thus, signal deconvolution of these measurements is crucial in understanding the underlying biological processes.

View Article and Find Full Text PDF

We consider the problem of sparse adaptive neuronal system identification, where the goal is to estimate the sparse time-varying neuronal model parameters in an online fashion from neural spiking observations. We develop two adaptive filters based on greedy estimation techniques and regularized log-likelihood maximization. We apply the proposed algorithms to simulated spiking data as well as experimentally recorded data from the ferret's primary auditory cortex during performance of auditory tasks.

View Article and Find Full Text PDF

Objective: A central problem in computational neuroscience is to characterize brain function using neural activity recorded from the brain in response to sensory inputs with statistical confidence. Most of existing estimation techniques, such as those based on reverse correlation, exhibit two main limitations: first, they are unable to produce dynamic estimates of the neural activity at a resolution comparable with that of the recorded data, and second, they often require heavy averaging across time as well as multiple trials in order to construct statistical confidence intervals for a precise interpretation of data. In this paper, we address the above-mentioned issues for estimating auditory temporal response function (TRF) as a parametric computational model for selective auditory attention in competing-speaker environments.

View Article and Find Full Text PDF