Publications by authors named "Behrous Davani"

We showed previously that undifferentiated, proliferating human islet-derived precursor cells (hIPCs) are a type of mesenchymal stem/stromal cell (MSC) that can be induced by serum deprivation to form clusters and ultimately differentiate in vitro to endocrine cells. We also demonstrated that partially differentiated hIPC clusters, when implanted under the kidney capsules of mice, continued to differentiate in vivo into hormone-producing cells. However, we noted that not all hIPC preparations yielded insulin-secreting cells in vivo and that in some animals no hormone-expressing cells were found.

View Article and Find Full Text PDF
Article Synopsis
  • Islet transplantation improves blood sugar control in diabetics, but it's limited by the availability of donor pancreases.
  • Human islet-derived precursor cells (hIPCs) can be expanded and differentiated to create a large number of insulin-producing cells.
  • The study found that hIPCs can become functional cells producing insulin and other hormones after transplantation into mice, making them a potential rich source for diabetes treatment.
View Article and Find Full Text PDF

In insulinoma cell lines proliferation and insulin gene transcription are stimulated by growth hormone and prolactin, which convey their signals through the transcription factors Stat5a and 5b (referred to as Stat5). However, the contribution of Stat5 to the physiology of beta-cells in vivo could not be assessed directly since Stat5-null mice die perinataly. To explore the physiological role of Stat5 in the mouse, the corresponding gene locus targeted with loxP sites was inactivated in beta-cells using two lines of Cre recombinase expressing transgenic mice.

View Article and Find Full Text PDF

Glucocorticoids are diabetogenic hormones because they decrease glucose uptake, increase hepatic glucose production, and inhibit insulin release. To study the long-term effects of increased glucocorticoid sensitivity in beta-cells, we studied transgenic mice overexpressing the rat glucocorticoid receptor targeted to the beta-cells using the rat insulin I promoter. Here we report that these mice developed hyperglycemia both in the fed and the overnight-fasted states at 12-15 months of age.

View Article and Find Full Text PDF