The eco-friendly polymeric nanocomposite hydrogels were prepared by incorporating dendritic fibrous nanosilica (DFNS) and apple peel (AP) as reinforcements into the crosslinked polymer produced by cellulose (CL) and poly (glycerol tartrate) (TAGL) via gelation method and used for efficient adsorption of Pb, Co, Ni, and Cu metal ions. DFNS and DFNS/TAGL-CL/AP samples were characterized by FESEM, FTIR, TEM, TGA, and nitrogen adsorption/desorption methods. The results of TGA analysis showed that the thermal stability of the prepared hydrogels improved significantly in the presence of DFNS.
View Article and Find Full Text PDFCellulose/poly (glycerol citrate) reinforced with thiol-rich polyhedral oligomeric silsesquioxane and apple peel (POSS-SH@CAG-CEL/AP) was synthesized using gelation method in the presence of glutaraldehyde as a crosslinker agent and used as an efficient composite hydrogel for elimination of Tl(Ι) from aqueous solutions. This composite hydrogel and synthesized thiol-rich polyhedral oligomeric silsesquioxane were characterized by elemental analysis, FT-IR, NMR, TGA, and FE-SEM techniques. The effects of synthetic and environmental parameters on the adsorption capacity of the composite hydrogel were investigated and it was found that thiol-rich polyhedral oligomeric silsesquioxane has improved the hydrogel properties including the Tl(Ι) uptake and the thermal stability.
View Article and Find Full Text PDFAim: In this work, to improve the solubility and bioavailability of the rosuvastatin (RSV) drug, chitosan-coated mesoporous silica nanoparticles (CS-MSNs) as a drug delivery system were fabricated.
Methods: To do this, first MSNs with a maximum specific surface area were synthesized from sodium silicate as silica source and different molar ratios of cethyl trimethylammonium bromide (CTAB) and pluronics (P123, PEO20PPO17PEO20) as surfactants via the sol-gel process. Then, the synthesized MSNs were coated by CS polymer with the help of (3-glycidoxypropyl)methyldiethoxysilane (GPTMS) as a linker between MSNs and CS.