Publications by authors named "Behrooz Masoumi"

Complex networks are used in a variety of applications. Revealing the structure of a community is one of the essential features of a network, during which remote communities are discovered in a complex network. In the real world, dynamic networks are evolving, and the problem of tracking and detecting communities at different time intervals is raised.

View Article and Find Full Text PDF

Human activity recognition (HAR) has been of interest in recent years due to the growing demands in many areas. Applications of HAR include healthcare systems to monitor activities of daily living (ADL) (primarily due to the rapidly growing population of the elderly), security environments for automatic recognition of abnormal activities to notify the relevant authorities, and improve human interaction with the computer. HAR research can be classified according to the data acquisition tools (sensors or cameras), methods (handcrafted methods or deep learning methods), and the complexity of the activity.

View Article and Find Full Text PDF

The goal of aggregating the base classifiers is to achieve an aggregated classifier that has a higher resolution than individual classifiers. Random forest is one of the types of ensemble learning methods that have been considered more than other ensemble learning methods due to its simple structure, ease of understanding, as well as higher efficiency than similar methods. The ability and efficiency of classical methods are always influenced by the data.

View Article and Find Full Text PDF

Detecting community structure is one of the most important problems in analyzing complex networks such as technological, informational, biological, and social networks and has great importance in understanding the operation and organization of these networks. One of the significant properties of social networks is the communication intensity between the users, which has not received much attention so far. Most of the proposed methods for detecting community structure in social networks have only considered communications between users.

View Article and Find Full Text PDF

Community structure is one of the most important topological characteristics of complex networks. Detecting the community structure is a highly challenging problem in analyzing complex networks and it has high significance for understanding the function and organization of complex networks. A wide range of algorithms for this problem uses the maximization of a quality function called modularity.

View Article and Find Full Text PDF