Publications by authors named "Behrooz Abbasi Souraki"

In the present study, a bioelectrochemical reactor (BEC) was utilized to treat two types of real saline produced water (PW). BEC was designed based on the combination of electrocoagulation (EC) process with halophilic microorganisms, and it was assessed in terms of biodegradation of hydrocarbons. The effects of various operating parameters including the current density, electrical contact time (On/Off), hydraulic retention time (HRT), and total dissolved solids (TDS) at different levels on the chemical oxygen demand (COD) removal efficiency, settleability, and performance of isolated halophilic microorganisms were examined.

View Article and Find Full Text PDF

Salinity expressed as total dissolved solids (TDS), is the most challenging parameter in bioremediation of produced water which may inhibit the microbial activities and cause sedimentation problems. The present study explores the feasibility of using walnut shell as an inexpensive and accessible adsorbent-carrier for the immobilization of isolated halophilic microorganisms for treatment of synthetic oilfield produced water. The moving bed biofilm reactor (MBBR) was examined with influent chemical oxygen demand (COD) concentrations from 900 to 3600 mg L, TDS concentrations from 35,000-200,000 mg L, and cycle times from 24 to 72 h.

View Article and Find Full Text PDF

The treatment of pulp and paper mill wastewater by combining an ultrafiltration (UF) membrane and advanced oxidation processes (AOPs) was investigated at a bench scale. In the present study, the effects of impressive parameters on membrane fouling such as CaCl (mg/L), pH, and temperature (°C) were studied using response surface methodology (RSM). According to the results yielded, at the temperature of 45°C, pH of 10 and CaCl concentration of 400 mg/L, the fouling reached its minimum (32%).

View Article and Find Full Text PDF