The colonization of dental implants by oral biofilms causes inflammatory reactions that can ultimately lead to implant loss. Therefore, safety-integrated implant surfaces are under development that aim to detect bacterial attachment at an early stage and subsequently release antibacterial compounds to prevent their accumulation. Since primary oral colonizers ferment carbohydrates leading to local acidification, pH is considered a promising trigger for these surfaces.
View Article and Find Full Text PDFWe introduce Ultra-Flexible Tentacle Electrodes (UFTEs), packing many independent fibers with the smallest possible footprint without limitation in recording depth using a combination of mechanical and chemical tethering for insertion. We demonstrate a scheme to implant UFTEs simultaneously into many brain areas at arbitrary locations without angle-of-insertion limitations, and a 512-channel wireless logger. Immunostaining reveals no detectable chronic tissue damage even after several months.
View Article and Find Full Text PDFIn complex natural environments, sensory systems are constantly exposed to a large stream of inputs. Novel or rare stimuli, which are often associated with behaviorally important events, are typically processed differently than the steady sensory background, which has less relevance. Neural signatures of such differential processing, commonly referred to as novelty detection, have been identified on the level of EEG recordings as mismatch negativity (MMN) and on the level of single neurons as stimulus-specific adaptation (SSA).
View Article and Find Full Text PDFAutomatic detection of a surprising change in the sensory input is a central element of exogenous attentional control. Stimulus-specific adaptation (SSA) is a potential neuronal mechanism detecting such changes and has been robustly described across sensory modalities and different instances of the ascending sensory pathways. However, little is known about the relationship of SSA to perception.
View Article and Find Full Text PDFThe regular use of antimicrobials in livestock production selects for antimicrobial resistance. The potential impact of this practice on human health needs to be studied in more detail, including the role of the environment for the persistence and transmission of antimicrobial-resistant bacteria. During an investigation of a pig farm and its surroundings in Brandenburg, Germany, we detected abundant cephalosporin- and fluoroquinolone-resistant Escherichia coli in pig faeces, sedimented dust, and house flies (Musca domestica).
View Article and Find Full Text PDFNumerous psychophysical studies show that Bayesian inference governs sensory decision-making; however, the specific neural circuitry underlying this probabilistic mechanism remains unclear. We record extracellular neural activity along the somatosensory pathway of mice while delivering sensory stimulation paradigms designed to isolate the response to the surprise generated by Bayesian inference. Our results demonstrate that laminar cortical circuits in early sensory areas encode Bayesian surprise.
View Article and Find Full Text PDFThe goal of this study was to identify features in mouse electrocorticogram recordings that indicate the depth of anesthesia as approximated by the administered anesthetic dosage. Anesthetic depth in laboratory animals must be precisely monitored and controlled. However, for the most common lab species (mice) few indicators useful for monitoring anesthetic depth have been established.
View Article and Find Full Text PDFThe quantification of behaviors of interest from video data is commonly used to study brain function, the effects of pharmacological interventions, and genetic alterations. Existing approaches lack the capability to analyze the behavior of groups of animals in complex environments. We present a novel deep learning architecture for classifying individual and social animal behavior, even in complex environments directly from raw video frames, while requiring no intervention after initial human supervision.
View Article and Find Full Text PDFStimulus-Specific Adaptation (SSA) to repetitive stimulation is a phenomenon that has been observed across many different species and in several brain sensory areas. It has been proposed as a computational mechanism, responsible for separating behaviorally relevant information from the continuous stream of sensory information. Although SSA can be induced and measured reliably in a wide variety of conditions, the network details and intracellular mechanisms giving rise to SSA still remain unclear.
View Article and Find Full Text PDFDuring a field experiment applying broiler manure for fertilization of agricultural land, we detected viable Clostridioides (also known as Clostridium) difficile in broiler faeces, manure, dust and fertilized soil. A large diversity of toxigenic C. difficile isolates was recovered, including PCR ribotypes common from human disease.
View Article and Find Full Text PDFNon-invasive, molecularly-specific, focal modulation of brain circuits with low off-target effects can lead to breakthroughs in treatments of brain disorders. We systemically inject engineered ultrasound-controllable drug carriers and subsequently apply a novel two-component Aggregation and Uncaging Focused Ultrasound Sequence (AU-FUS) at the desired targets inside the brain. The first sequence aggregates drug carriers with millimeter-precision by orders of magnitude.
View Article and Find Full Text PDFMicrob Biotechnol
September 2020
This is the first study to quantify the dependence on wind velocity of airborne bacterial emission fluxes from soil. It demonstrates that manure bacteria get aerosolized from fertilized soil more easily than soil bacteria, and it applies bacterial genomic sequencing for the first time to trace environmental faecal contamination back to its source in the chicken barn. We report quantitative, airborne emission fluxes of bacteria during and following the fertilization of agricultural soil with manure from broiler chickens.
View Article and Find Full Text PDFBacteria have evolved complex sensing and signaling systems to react to their changing environments, most of which are present in all domains of life. Canonical bacterial sensing and signaling modules, such as membrane-bound ligand-binding receptors and kinases, are very well described. However, there are distinct sensing mechanisms in bacteria that are less studied.
View Article and Find Full Text PDFThe extent to which the primary auditory cortex (A1) participates in instructing animal behavior remains debated. Although multiple studies have shown A1 activity to correlate with animals' perceptual judgments (Jaramillo and Zador, 2011; Bizley et al., 2013; Rodgers and DeWeese, 2014), others have found no relationship between A1 responses and reported auditory percepts (Lemus et al.
View Article and Find Full Text PDFThe Helicobacter pylori energy sensor TlpD determines tactic behaviour under low energy conditions and is important in vivo. We explored protein-protein interactions of TlpD and their impact on TlpD localisation and function. Pull-down of tagged TlpD identified protein interaction partners of TlpD, which included the chemotaxis histidine kinase CheAY2, the central metabolic enzyme aconitase (AcnB) and the detoxifying enzyme catalase (KatA).
View Article and Find Full Text PDFObjective. The purpose of this study is to describe the three-dimensional morphometry of the brachialis muscle at its distal attachment to the ulna. Methods.
View Article and Find Full Text PDFStimulus-specific adaptation (SSA) to repetitive stimulation has been proposed to separate behaviorally relevant features from a stream of continuous sensory information. However, the exact mechanisms giving rise to SSA and cortical deviance detection are not well understood. We therefore used an oddball paradigm and multicontact electrodes to characterize single-neuron and local field potential responses to various deviant stimuli across the rat somatosensory cortex.
View Article and Find Full Text PDFNeocortical responses typically adapt to repeated sensory stimulation, improving sensitivity to stimulus changes, but possibly also imposing limitations on perception. For example, it is unclear whether information about stimulus frequency is perturbed by adaptation or encoded by precise response timing. We addressed this question in rat barrel cortex by comparing performance in behavioral tasks with either whisker stimulation, which causes frequency-dependent adaptation, or optical activation of cortically expressed channelrhodopsin-2, which elicits non-adapting neural responses.
View Article and Find Full Text PDFIn order to structure the sensory environment our brain needs to detect changes in the surrounding that might indicate events of presumed behavioral relevance. A characteristic brain response presumably related to the detection of such novel stimuli is termed mismatch negativity (MMN) observable in human scalp recordings. A candidate mechanism underlying MMN at the neuronal level is stimulus-specific adaptation (SSA) which has several characteristics in common.
View Article and Find Full Text PDFTinnitus is one of the major audiological diseases, affecting a significant portion of the ageing society. Despite its huge personal and presumed economic impact there are only limited therapeutic options available. The reason for this deficiency lies in the very nature of the disease as it is deeply connected to elementary plasticity of auditory processing in the central nervous system.
View Article and Find Full Text PDFHelicobacter pylori maintains colonization in its human host using a limited set of taxis sensors. TlpD is a proposed energy taxis sensor of H. pylori and dominant under environmental conditions of low bacterial energy yield.
View Article and Find Full Text PDFRats and mice receive a constant bilateral stream of tactile information with their large mystacial vibrissae when navigating in their environment. In a two-alternative forced choice paradigm (2-AFC), head-fixed rats and mice learned to discriminate vibrotactile frequencies applied simultaneously to individual whiskers on the left and right sides of the snout. Mice and rats discriminated 90-Hz pulsatile stimuli from pulsatile stimuli with lower repetition frequencies (10-80 Hz) but with identical kinematic properties in each pulse.
View Article and Find Full Text PDFHelicobacter pylori colonizes about half of the world's population. It is a causative agent of stomach diseases, including malignant tumors. We report the genome sequence of strain N6, which is widely used in H.
View Article and Find Full Text PDFThe detection of novel and therefore potentially behavioral relevant stimuli is of fundamental importance for animals. In the auditory system, stimulus-specific adaptation (SSA) resulting in stronger responses to rare compared with frequent stimuli was proposed as such a novelty detection mechanism. SSA is a now well established phenomenon found at different levels along the mammalian auditory pathway.
View Article and Find Full Text PDFChanges in the sensory environment are good indicators for behaviorally relevant events and strong triggers for the reallocation of attention. In the auditory domain, violations of a pattern of repetitive stimuli precipitate in the event-related potentials as mismatch negativity (MMN). Stimulus-specific adaptation (SSA) of single neurons in the auditory cortex has been proposed to be the cellular substrate of MMN (Nelken and Ulanovsky, 2007).
View Article and Find Full Text PDF