Publications by authors named "Behrang Shiri Varnamkhasti"

Background: Due to the complex pathophysiological mechanisms involved in cancer progression and metastasis, current therapeutic approaches lack efficacy and have significant adverse effects. Therefore, it is essential to establish novel strategies for combating cancer. Phytochemicals, which possess multiple biological activities, such as antioxidant, anti-inflammatory, antimutagenic, immunomodulatory, antiproliferative, anti-angiogenesis, and antimetastatic properties, can regulate cancer progression and interfere in various stages of cancer development by suppressing various signaling pathways.

View Article and Find Full Text PDF
Article Synopsis
  • * Curcumin, a natural compound known for its anti-inflammatory, antioxidant, and anti-apoptotic properties, shows promise in protecting the liver and has various health benefits with good safety profiles.
  • * The review suggests exploring advanced delivery systems for curcumin, such as nanoparticles and lipid-based formulations, to enhance its effectiveness in liver protection.
View Article and Find Full Text PDF

Both oil and atorvastatin possess anti-inflammatory, immunomodulatory, antioxidant, and antibacterial properties that benefit wound healing. In this work, chitosan-carboxymethyl cellulose was loaded on oil to synthesize oil nanogel (ONG) which was later used to load with atorvastatin to obtain atorvastatin-oil nanogel (ATONG). Evaluation of the particle size of ONG and ATONG proved the average of 172 and 193 nm, and their surface charges were found to be 32.

View Article and Find Full Text PDF

In the present work, we studied the structure-activity relationship and kinetics of thermal inactivation of α-glucosidase A (AglA) in a 50 mM potassium phosphate buffer at pH 6.8 using -nitrophenyl α-d-glucopyranoside (NPG) as the synthetic substrate following absorbance at 410 nm by UV-Vis spectrophotometer. The interface structure and residual activity plot were analyzed via biochemical measurements by means of conformational lock theory, as well.

View Article and Find Full Text PDF

The passage of therapeutic molecules across the Blood-Brain Barrier (BBB) is a profound challenge for the management of the Central Nervous System (CNS)-related diseases. The ineffectual nature of traditional treatments for CNS disorders led to the abundant endeavor of researchers for the design the effective approaches in order to bypass BBB during recent decades. Cell-Penetrating Peptides (CPPs) were found to be one of the promising strategies to manage CNS disorders.

View Article and Find Full Text PDF

The advent of porous materials, in particular zeolitic nanoparticles, has opened up unprecedented putative research avenues in nanomedicine. Zeolites with intracrystal mesopores are low framework density aluminosilicates possessing a regular porous structure along with intricate channels. Their unique physiochemical as well as physiological parameters necessitate a comprehensive overview on their classifications, fabrication platforms, cellular/macromolecular interactions, and eventually their prospective biomedical applications through illustrating the challenges and opportunities in different integrative medical and pharmaceutical fields.

View Article and Find Full Text PDF

Based on unique intrinsic properties of mesoporous silica nanoparticles (MSNs) such as high surface area, large pore size, good biocompatibility and biodegradability, stable aqueous dispersion, they have received much attention in the recent decades for their applications as a promising platform in the biomedicine field. These porous structures possess a pore size ranging from 2 to 50 nm which make them excellent candidates for various biomedical applications. Herein, at first we described the common approaches of cargo loading and release processes from MSNs.

View Article and Find Full Text PDF

Combination of chemotherapy and photothermal therapy has been proposed for better treatment of metastatic colon cancer. In this study SN38, a highly potent cytotoxic agent, was conjugated to negatively charged hyaluronic acid (HA), which was deposited on the surface of the positively charged gold nanoparticles via electrostatic interaction. The drug conjugation and its interaction with gold nanoparticles were verified by H NMR and UV-vis spectroscopies, respectively.

View Article and Find Full Text PDF

Chitosan-coated human serum albumin nanoparticles were functionalized by MUC1 aptamer to obtain a selective drug carrier toward cancers overexpressing MUC1. The negative charges of albumin nanoparticles were shifted to positive charges by surface modification with chitosan, and MUC1 was conjugated through an acrylate spacer. The cytotoxicity of targeted nanoparticles was significantly more than non-aptamer nanoparticles, and also the chitosan-coated nanoparticles had more cytotoxic effects than the negatively charged albumin nanoparticles.

View Article and Find Full Text PDF

Background: Cabazitaxel (CBZ) is a new taxane approved by FDA for treatment of castration- resistant prostate cancer not responding to docetaxel. However, CBZ is not a suitable substrate for p-glycoprotein 60, an efflux pump which transports anticancer drugs out of malignant cells and is therefore a promising drug for treatment of multidrug resistant tumors. Similar to other taxanes, the presence of Tween 80 in the CBZ formulation shows that it is insoluble in water.

View Article and Find Full Text PDF

Favorable physiochemical properties and the capability to accommodate targeting moieties make superparamegnetic iron oxide nanoparticles (SPIONs) popular theranostic agents. In this study, we engineered SPIONs for magnetic resonance imaging (MRI) and photothermal therapy of colon cancer cells. SPIONs were synthesized by microemulsion method and were then coated with gold to reduce their cytotoxicity and to confer photothermal capabilities.

View Article and Find Full Text PDF

Recently, it is suggested that mTOR signaling pathway is an important mediator in many cancers especially breast cancer. Therefore, effects of sirolimus as a mTOR inhibitor in breast cancer have been studied in combination with paclitaxel with or without controlled release effect. In this work, we prepared a water-soluble formulation of sirolimus-conjugated albumin nanoparticles loaded with paclitaxel, to study the effects of sirolimus concentration when it releases more later than paclitaxel in comparison with sirolimus-paclitaxel-loaded albumin nanoparticles.

View Article and Find Full Text PDF

NF-κB pathway has long been considered as one of the potent prototypical pro-inflammatory signaling pathway and its role in several aspects of human health has been established. Recent studies have suggested that NF-κB activation is the master key in early development and pathobiology of several Cancers. Curcumin is a polyphenolic phytochemical compound with several stablished anti-inflammatory properties and is known to exert its anti-inflammatory effects mostly by interrupting NF-κB signaling pathway at multiple stages.

View Article and Find Full Text PDF

Nanoparticles have been considered to improve delivery and physicochemical characteristics of bioactive agents in recent years. In this study, a core-shell chitosan nanoparticulate system was prepared for the targeted delivery of SN-38. SN-38, an active metabolite of camptothecin, conjugated to hyaluronic acid (HA) was used as the shell of chitosan nanoparticles decorated with MUC1 aptamer.

View Article and Find Full Text PDF