Hydrocarbon fate and transport in various categories of peatlands is complicated by the botanical origin, and thus variations in the hydraulic structures and surface chemistry of its peat soils. There has been no systematic evaluation of the role of different peat types on hydrocarbon migration. Thus, two-phase, and three-phase flow experiments were performed for living and partially decomposed peat cores from bog, fen, and swamp peatlands.
View Article and Find Full Text PDFMillions of tonnes of coarse tailings sand are produced every year as a byproduct of the bitumen extraction process in the Athabasca Oil Sands Region. These tailings materials contain residual quantities of mobile solutes, which can be transported through groundwater to downgradient terrestrial and aquatic ecosystems. The anticipated ubiquity of coarse tailings sand on the post-mined landscape necessitates the characterization of its hydraulic and transport properties.
View Article and Find Full Text PDFAfter a hydrocarbon spill in a peatland, dissolution of water-soluble compounds including benzene and toluene introduces a dissolved-phase plume to the peatland groundwater system, while the adsorption of these solutes onto the peat matrix restrains their distribution velocity. The adsorption of benzene and toluene and its dependency on peat depth, thus degree of decomposition, are investigated. The batch adsorption experiments revealed that benzene and toluene adsorption isotherms in peat are linear, with adsorption coefficients ranging from 16.
View Article and Find Full Text PDFDespite the risks that hydrocarbon contamination from pipeline leaks or train derailments impose on the health of peatlands in hydrocarbon production areas and transportation corridors, assessing the effect of such contaminations on the health and sustainability of peatlands has received little attention. This study investigates the impacts of hydrocarbons on peat microbial communities. Column experiments were conducted on non-aqueous phase liquid (NAPL) contaminated undisturbed peat core (0-35 cm) under static and fluctuating water table conditions.
View Article and Find Full Text PDFJ Contam Hydrol
February 2019
Extensive pipeline and railway corridors crossing Canadian peatlands make them vulnerable to hydrocarbon spills, potentially impairing ecosystem health, so it is important to be able to forecast hydrocarbon fate and transport within and beyond the peatland. The redistribution of hydrocarbon liquids in groundwater systems are controlled by the multiphase flow characteristics of the aquifer material including capillary pressure-saturation-relative permeability (P-S-k) relations. However, these relations have never been characterized for the hydrocarbon-water phases in peat.
View Article and Find Full Text PDFBioretention cells are a popular control strategy for stormwater volume and quality, but their efficiency for water infiltration and nutrient removal under cold climate conditions has been poorly studied. In this work, soil cores were collected from an active bioretention cell containing engineered soil material amended with a phosphate sorbent medium. The cores were used in laboratory column experiments conducted to obtain a detailed characterization of the soil's bioretention performance during six consecutive freeze-thaw cycles (FTCs, from -10 to +10 °C).
View Article and Find Full Text PDF