The purpose of this study is to predict the load-bearing capacity (LBC) of fracture specimens containing V-notched friction-stir welded (FSWed) joints of AA7075-Cu and AA7075-AA6061 materials and subjected to mode I loading conditions. Due to the resulting elastic-plastic behavior and the corresponding development of significant plastic deformations, the fracture analysis of the FSWed alloys requires elastic-plastic fracture criteria, which are complex and time-consuming. Thus, in this study, the equivalent material concept (EMC) is applied, equating the actual AA7075-AA6061 and AA7075-Cu materials to equivalent virtual brittle materials.
View Article and Find Full Text PDFSpruce wood () is a highly orthotropic material whose fracture behavior in the presence of U-shaped notches and under combined tensile-tearing loading (so-called mixed-mode I/III loading) is analyzed in this work. Thus, several tests are carried out on U-notched samples with different notch tip radii (1 mm, 2 mm, and 4 mm) under various combinations of loading modes I and III (pure mode I, pure mode III, and three mixed-mode I/III loadings), from which both the experimental fracture loads and the fracture angles of the specimens are obtained. Because of the linear elastic behavior of the spruce wood, the point stress (PS) and mean stress (MS) methods, both being stress-based criteria, are used in combination with the Virtual Isotropic Material Concept (VIMC) for predicting the fracture loads and the fracture angles.
View Article and Find Full Text PDF