Sliding a tool across a surface generates rich sensations that can be analyzed to recognize what is being touched. However, the optimal configuration for capturing these signals is yet unclear. To bridge this gap, we consider haptic-auditory data as a human explores surfaces with different steel tools, including accelerations of the tool and finger, force and torque applied to the surface, and contact sounds.
View Article and Find Full Text PDFSliding friction between the skin and a touched surface is highly complex, but lies at the heart of our ability to discriminate surface texture through touch. Prior research has elucidated neural mechanisms of tactile texture perception, but our understanding of the nonlinear dynamics of frictional sliding between the finger and textured surfaces, with which the neural signals that encode texture originate, is incomplete. To address this, we compared measurements from human fingertips sliding against textured counter surfaces with predictions of numerical simulations of a model finger that resembled a real finger, with similar geometry, tissue heterogeneity, hyperelasticity, and interfacial adhesion.
View Article and Find Full Text PDF