The clinical effectiveness of human induced pluripotent stem cells (iPSCs) is highly dependent on a few key quality characteristics including the generation of high quality cell bank, long-term genomic stability, post-thaw viability, plating efficiency, retention of pluripotency, directed differentiation, purity, potency, and sterility. We have already reported the establishment of iPSC master cell banks (MCBs) and working cell banks (WCBs) under current good manufacturing procedure (cGMP)-compliant conditions. In this study, we assessed the cellular and genomic stability of the iPSC lines generated and cryopreserved five years ago under cGMP-compliant conditions.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) hold great potential to generate novel, curative cell therapy products. However, current methods to generate these novel therapies lack scalability, are labor-intensive, require a large footprint, and are not suited to meet clinical and commercial demands. Therefore, it is necessary to develop scalable manufacturing processes to accommodate the generation of high-quality iPSC derivatives under controlled conditions.
View Article and Find Full Text PDFSessions included an overview of past cell therapy (CT) conferences sponsored by the International Alliance for Biological Standardization (IABS). The sessions highlighted challenges in the field of human pluripotent stem cells (hPSCs) and also addressed specific points on manufacturing, bioanalytics and comparability, tumorigenicity testing, storage, and shipping. Panel discussions complemented the presentations.
View Article and Find Full Text PDFThe discovery of reprogramming and generation of human-induced pluripotent stem cells (iPSCs) has revolutionized the field of regenerative medicine and opened new opportunities in cell replacement therapies. While generation of iPSCs represents a significant breakthrough, the clinical relevance of iPSCs for cell-based therapies requires generation of high-quality specialized cells through robust and reproducible directed differentiation protocols. We have recently reported manufacturing of human iPSC master cell banks (MCB) under current good manufacturing practices (cGMPs).
View Article and Find Full Text PDFWe have recently described manufacturing of human induced pluripotent stem cells (iPSC) master cell banks (MCB) generated by a clinically compliant process using cord blood as a starting material (Baghbaderani et al. in Stem Cell Reports, 5(4), 647-659, 2015). In this manuscript, we describe the detailed characterization of the two iPSC clones generated using this process, including whole genome sequencing (WGS), microarray, and comparative genomic hybridization (aCGH) single nucleotide polymorphism (SNP) analysis.
View Article and Find Full Text PDFThe discovery of induced pluripotent stem cells (iPSCs) and the concurrent development of protocols for their cell-type-specific differentiation have revolutionized our approach to cell therapy. It has now become critical to address the challenges related to the generation of iPSCs under current good manufacturing practice (cGMP) compliant conditions, including tissue sourcing, manufacturing, testing, and storage. Furthermore, regarding the technical challenges, it is very important to keep the costs of manufacturing and testing reasonable and solve logistic hurdles that permit the global distribution of these products.
View Article and Find Full Text PDFHuntington's disease (HD) is a neurodegenerative disorder that is characterized by progressive dementia, choreiform involuntary movements, and emotional deterioration. Neuropathological features include the progressive degeneration of striatal γ-aminobutyric acid (GABA) neurons. New therapeutic approaches, such as the transplantation of human neural precursor cells (hNPCs) to replace damaged or degenerated cells, are currently being investigated.
View Article and Find Full Text PDFUnderstanding initial cell growth, interactions associated with the process of expansion of human neural precursor cells (hNPCs), and cellular events pre- and postdifferentiation are important for developing bioprocessing protocols to reproducibly generate multipotent cells that can be used in basic research or the treatment of neurodegenerative disorders. Herein, we report the in vitro responses of telencephalon hNPCs grown in a serum-free growth medium using time-lapse live imaging as well as cell-surface marker, aggregate size, and immunocytochemical analyses. Time-lapse analysis of hNPC initial expansion indicated that cell-surface attachment in stationary culture and the frequency of cell-cell interaction in suspension conditions are important for subsequent aggregate formation and hNPC growth.
View Article and Find Full Text PDFTissue-specific human neural precursor cells (hNPCs) can be isolated from various regions of the developing or adult central nervous system and may serve as a viable source of cells in cell replacement therapies for the treatment of neurodegenerative disorders. However, in order for cell replacement strategies to become a routine therapeutic option for the treatment of neurodegenerative disorders, hNPCs should be generated under standardized and controlled conditions. Studies over the last two decades have focused on developing cell growth media and cell handling protocols for expansion and differentiation of hNPCs in culture.
View Article and Find Full Text PDFHuman neural precursor cells (hNPCs), harvested from somatic tissue and grown in vitro, may serve as a source of cells for cell replacement strategies aimed at treating neurodegenerative disorders such as Parkinson's disease (PD), Huntington's disease (HD), and intractable spinal cord pain. A crucial element in a robust clinical production method for hNPCs is a serum-free growth medium that can support the rapid expansion of cells while retaining their multipotency. Here, we report the development of a cell growth medium (PPRF-h2) for the expansion of hNPCs, achieving an overall cell-fold expansion of 10(13) over a period of 140 days in stationary culture which is significantly greater than other literature results.
View Article and Find Full Text PDFThe transplantation of in vitro expanded human neural precursor cells (hNPCs) represents a potential new treatment alternative for individuals suffering from incurable neurodegenerative disorders such as Parkinson's disease (PD) and Huntington's disease (HD). However, in order for cell restorative therapy to have widespread therapeutic significance, it will be necessary to generate unlimited quantities of clinical grade hNPCs in a standardized method. We report here that we have developed a serum-free medium and scale-up protocols that allow for the generation of clinical quantities of human telencephalon-derived hNPCs in 500-mL computer-controlled suspension bioreactors.
View Article and Find Full Text PDFObject: Fetal tissue transplantation for Parkinson disease (PD) has demonstrated promising results in experimental and clinical studies. However, the widespread clinical application of this therapeutic approach is limited by a lack of fetal tissue. Human neural precursor cells (HNPCs) are attractive candidates for transplantation because of their long-term proliferation activity.
View Article and Find Full Text PDF