Publications by authors named "Behnaam Aazhang"

This paper presents a novel approach to synthesize a standard 12-lead electrocardiogram (ECG) from any three independent ECG leads using a patient-specific encoder-decoder convolutional neural network. The objective is to decrease the number of recording locations required to obtain the same information as a 12-lead ECG, thereby enhancing patients' comfort during the recording process. We evaluate the proposed algorithm on a dataset comprising fifteen patients, as well as a randomly selected cohort of patients from the PTB diagnostic database.

View Article and Find Full Text PDF

In this study, we present a novel graph-based methodology for an accurate classification of cardiac arrhythmia diseases using a single-lead electrocardiogram (ECG). The proposed approach employs the visibility graph technique to generate graphs from time signals. Subsequently, informative features are extracted from each graph and then fed into classifiers to match the input ECG signal with the appropriate target arrhythmia class.

View Article and Find Full Text PDF

Social interactions represent a ubiquitous aspect of our everyday life that we acquire by interpreting and responding to visual cues from conspecifics. However, despite the general acceptance of this view, how visual information is used to guide the decision to cooperate is unknown. Here, we wirelessly recorded the spiking activity of populations of neurons in the visual and prefrontal cortex in conjunction with wireless recordings of oculomotor events while freely moving macaques engaged in social cooperation.

View Article and Find Full Text PDF

The neuromodulation effect of low-intensity focused ultrasound (LIFU) is highly target-specific. Unintended off-target neuronal excitation can be elicited when the beam focusing accuracy and resolution are limited, whereas the resulted side effect has not been evaluated quantitatively. There is also a lack of methods addressing the minimization of such side effects.

View Article and Find Full Text PDF

Sub-scalp electroencephalography (ssEEG) is emerging as a promising technology in ultra-long-term electroencephalography (EEG) recordings. Given the diversity of devices available in this nascent field, uncertainty persists about its utility in epilepsy evaluation. This review critically dissects the many proposed utilities of ssEEG devices including (1) seizure quantification, (2) seizure characterization, (3) seizure lateralization, (4) seizure localization, (5) seizure alarms, (6) seizure forecasting, (7) biomarker discovery, (8) sleep medicine, and (9) responsive stimulation.

View Article and Find Full Text PDF

There exists a gap in terms of the signals provided by pacemakers (i.e., intracardiac electrogram (EGM)) and the signals doctors use (i.

View Article and Find Full Text PDF

Recently, the temporal interference stimulation (TIS) technique for focal noninvasive deep brain stimulation (DBS) was reported. However, subsequent computational modeling studies on the human brain have shown that while TIS achieves higher focality of electric fields than state-of-the-art methods, further work is needed to improve the stimulation strength. Here, we investigate the idea of EMvelop stimulation, a minimally invasive DBS setup using temporally interfering gigahertz (GHz) electromagnetic (EM) waves.

View Article and Find Full Text PDF

Objective: Seizure prediction devices for drug-resistant epileptic patients could lead to improved quality of life and new treatment options, but current approaches to classification of electroencephalography (EEG) segments for early identification of the pre-seizure state typically require many features and complex classifiers. We therefore propose a novel spatio-temporal EEG feature set that significantly aids in separation and easy classification of the interictal and preictal states.

Approach: We derive key spectral features from the Embedded Dynamic Mode Decomposition (EmDMD) of the brain state system.

View Article and Find Full Text PDF

Cardiac electrophysiology requires the processing of several patient-specific data points in real time to provide an accurate diagnosis and determine an optimal therapy. Expanding beyond the traditional tools that have been used to extract information from patient-specific data, machine learning offers a new set of advanced tools capable of revealing previously unknown data patterns and features. This new tool set can substantially improve the speed and level of confidence with which electrophysiologists can determine patient-specific diagnoses and therapies.

View Article and Find Full Text PDF

Objective: Local activation time (LAT) mapping of cardiac chambers is vital for targeted treatment of cardiac arrhythmias in catheter ablation procedures. Current methods require too many LAT observations for an accurate interpolation of the necessarily sparse LAT signal extracted from intracardiac electrograms (EGMs). Additionally, conventional performance metrics for LAT interpolation algorithms do not accurately measure the quality of interpolated maps.

View Article and Find Full Text PDF

Epilepsy is a common neurological disorder in which patients suffer from sudden and unpredictable seizures. Seizures are caused by excessive and abnormal neuronal activity. Different methods have been employed to investigate electroencephalogram (EEG) data in patients with epilepsy.

View Article and Find Full Text PDF

We propose a novel convolutional neural network framework for mapping a multivariate input to a multivariate output. In particular, we implement our algorithm within the scope of 12-lead surface electrocardiogram (ECG) reconstruction from intracardiac electrograms (EGM) and vice versa. The goal of performing this task is to allow for improved point-of-care monitoring of patients with an implanted device to treat cardiac pathologies.

View Article and Find Full Text PDF

Mild traumatic brain injuries (mTBIs) are the most common type of brain injury. Timely diagnosis of mTBI is crucial in making 'go/no-go' decision in order to prevent repeated injury, avoid strenuous activities which may prolong recovery, and assure capabilities of high-level performance of the subject. If undiagnosed, mTBI may lead to various short- and long-term abnormalities, which include, but are not limited to impaired cognitive function, fatigue, depression, irritability, and headaches.

View Article and Find Full Text PDF

Distinguishing between direct and indirect frequency coupling is an important aspect of functional connectivity analyses because this distinction can determine if two brain regions are directly connected. Although partial coherence quantifies partial frequency coupling in the linear Gaussian case, we introduce a general framework that can address even the nonlinear and non-Gaussian case. Our technique, partial generalized coherence (PGC), expands prior work by allowing pairwise frequency coupling analyses to be conditioned on other processes, enabling model-free partial frequency coupling results.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate inference of functional connectivity in the brain is essential for understanding brain function, but traditional methods struggle with distinguishing direct from indirect connections due to scalability issues.
  • The authors introduce a new technique called graphical directed information (GDI) that improves this by allowing analysis of more nodes, resulting in a more precise functional connectivity graph with fewer indirect connections.
  • GDI utilizes a novel approach for estimating mutual information and works effectively with different types of time series data, successfully inferring connections in complex neural networks and addressing challenges in neural data analysis.
View Article and Find Full Text PDF

Canonical language models describe eloquent function as the product of a series of cognitive processes, typically characterized by the independent activation profiles of focal brain regions. In contrast, more recent work has suggested that the interactions between these regions, the cortical networks of language, are critical for understanding speech production. We investigated the cortical basis of picture naming (PN) with human intracranial electrocorticography (ECoG) recordings and direct cortical stimulation (DCS), adjudicating between two competing hypotheses: are task-specific cognitive functions discretely computed within well-localized brain regions or rather by distributed networks? The time resolution of ECoG allows direct comparison of intraregional activation measures [high gamma (h ) power] with graph theoretic measures of interregional dynamics.

View Article and Find Full Text PDF

Electrical neural interfaces serve as direct communication pathways that connect the nervous system with the external world. Technological advances in this domain are providing increasingly more powerful tools to study, restore, and augment neural functions. Yet, the complexities of the nervous system give rise to substantial challenges in the design, fabrication, and system-level integration of these functional devices.

View Article and Find Full Text PDF

Functional connectivity analyses focused on frequency-domain relationships, i.e. frequency coupling, powerfully reveal neurophysiology.

View Article and Find Full Text PDF

Objective: This paper presents a data-driven method for estimating the memory order (the average length of the statistical dependence of a given sample on previous samples) of a recorded electrocorticography (ECoG) sequence.

Methods: The proposed inference method is based on the relationship between the loss in predicting the next sample in a time-series and the dependence of this sample on the previous samples. Specifically, the memory order is estimated to be the number of past samples that minimize the least squares error (LSE) in predicting the next sample.

View Article and Find Full Text PDF

Objective: Identification of patient-specific epileptogenic networks is critical to designing successful treatment strategies. Multiple noninvasive methods have been used to characterize epileptogenic networks. However, these methods lack the spatiotemporal resolution to allow precise localization of epileptiform activity.

View Article and Find Full Text PDF
Article Synopsis
  • This study introduces a new method, context tree maximizing (CTM), to analyze large-scale neuronal activity recordings and infer synaptic connections through a measure called directed information (DI).
  • Unlike traditional approaches, CTM-DI is data-driven and can detect both linear and nonlinear relationships between neurons, making it effective for understanding complex neural circuits.
  • The method has been validated using simulations and real recordings, showing promise for mapping neural connectivity and revealing changes in synaptic strengths and network structures related to learning and motor patterns.
View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disorder which follows from cell loss of dopaminergic neurons in the substantia nigra pars compacta (SNc), a nucleus in the basal ganglia (BG). Deep brain stimulation (DBS) is an electrical therapy that modulates the pathological activity to treat the motor symptoms of PD. Although this therapy is currently used in clinical practice, the sufficient conditions for therapeutic efficacy are unknown.

View Article and Find Full Text PDF

The development of microelectrodes capable of safely stimulating and recording neural activity is a critical step in the design of many prosthetic devices, brain-machine interfaces, and therapies for neurologic or nervous-system-mediated disorders. Metal electrodes are inadequate prospects for the miniaturization needed to attain neuronal-scale stimulation and recording because of their poor electrochemical properties, high stiffness, and propensity to fail due to bending fatigue. Here we demonstrate neural recording and stimulation using carbon nanotube (CNT) fiber electrodes.

View Article and Find Full Text PDF

The globus pallidus internus (GPi) is the main output nucleus of the basal ganglia, which is associated with a variety of functions including motor performance and cognition. The GPi is one of the primary targets of deep brain stimulation (DBS) in patients with movement disorders. However, the therapeutic mechanism of GPi-DBS is poorly understood and rodent models have not been characterized.

View Article and Find Full Text PDF