Publications by authors named "Behm R"

Introduction: When our rural trauma center first became certified in 1986, the Emergency Department (ED) was a mix of board-certified Emergency Medicine (EM) and Family Medicine trained physicians each with various degrees of airway experience. Therefore, Anesthesia providers had provided airway management during trauma activations for decades. Recently, our institution saw dramatic growth in the ED which is now staffed by board certified EM physicians and complemented by an EM residency program.

View Article and Find Full Text PDF

Introduction: The routine transfer of mild to moderate traumatic brain injuries (TBIs) to trauma centers with neurosurgical capabilities has recently been re-evaluated. The Brain Injury Guidelines (BIG) were developed to categorize TBI patients into three categories (BIG-1, BIG-2, and BIG-3), each representing a progressively increasing risk of clinical deterioration. This classification system has been previously validated at both level I and level III trauma centers.

View Article and Find Full Text PDF

Aiming at a better fundamental understanding of the chemistry of bimetallic PtAg/Pt(111) surfaces, we have investigated the stability, electronic properties and CO adsorption properties of bimetallic PtAg surfaces, including pseudomorphic Ag film covered Pt(111) surfaces and PtAg/Pt(111) monolayer surface alloys, using periodic density functional theory calculations. The data provide detailed insights into the relative stabilities of different surface configurations, as indicated by their formation enthalpies and surface energies, and changes in their electronic properties, , in the projected local densities of states and shifts in the d-band center. The adsorption properties of different Pt ensembles were systematically tested using CO as a probe molecule.

View Article and Find Full Text PDF

Introduction: The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to implementing strict social distancing mandates nationwide. This study evaluates the trauma trends during the pandemic at a rural level II trauma center in Pennsylvania.

Methods: A retrospective review of all trauma registries between 2018 and 2021 was performed overall and on a 6-month basis.

View Article and Find Full Text PDF

Elucidating the reaction mechanism in heterogeneous catalysis is critically important for catalyst development, yet remains challenging because of the often unclear nature of the active sites. Using a molecularly defined copper single-atom catalyst supported by a UiO-66 metal-organic framework (Cu/UiO-66) allows a detailed mechanistic elucidation of the CO oxidation reaction. Based on a combination of in situ/operando spectroscopies, kinetic measurements including kinetic isotope effects, and density-functional-theory-based calculations, we identified the active site, reaction intermediates, and transition states of the dominant reaction cycle as well as the changes in oxidation/spin state during reaction.

View Article and Find Full Text PDF

The development of synthetic particles that emulate real viruses in size, shape, and chemical composition is vital to the development of imprinted polymer-based sorbent materials (molecularly imprinted polymers, MIPs). In this study, we address surrogates for adenovirus type 5 (Adv 5) via the synthesis and subsequent modification of icosahedral gold nanoparticles (iAuNPs) decorated with the most abundant protein of the Adv 5 (i.e.

View Article and Find Full Text PDF

Near-infrared (NIR) light-activated photosensitization represents an encouraging therapeutic method in photodynamic therapy, especially for deep tissue penetration. In this context, two-photon activation, i.e.

View Article and Find Full Text PDF

Supported gold nanoparticles are widely studied catalysts and are among the most active known for the low-temperature water-gas shift reaction, which is essential in fuel and energy applications, but their practical application has been limited by their poor thermal stability. The catalysts deactivate on-stream via the growth of small Au nanoparticles. Using operando X-ray absorption and in situ scanning transmission electron microscopy, we report direct evidence that this process can be reversed by carrying out a facile oxidative treatment, which redisperses the gold nanoparticles and restores catalytic activity.

View Article and Find Full Text PDF

Vanadate compounds, such as VO·HO, are of high interest due to their versatile applications as electrode material for metal-ion batteries. In particular, VO·HO can insert different ions such as Li, Na, K, Mg and Zn. In that case, well resolved crystal structure data, such as crystal unit-cell parameters and atom positions, are needed in order to determine the structural information of the inserted ions in the VO·HO structure.

View Article and Find Full Text PDF

Li-rich layered oxides (LRLO) with specific energies beyond 900 Wh kg are one promising class of high-energy cathode materials. Their high Mn-content allows reducing both costs and the environmental footprint. In this work, Co-free Li Mn Ni O was investigated.

View Article and Find Full Text PDF

Halide-free, water-in-salt electrolytes (WiSEs) composed of potassium acetate (KAc) and zinc acetate (ZnAc ) are investigated as electrolytes in zinc-ion hybrid supercapacitors (ZHSs). Molecular dynamics simulations demonstrate that water molecules are mostly non-interacting with each other in the highly concentrated WiSEs, while "bulk-like water" regions are present in the dilute electrolyte. Among the various concentrated electrolytes investigated, the 30 m KAc and 1 m ZnAc electrolyte (30K1Zn) grants the best performance in terms of reversibility and stability of Zn plating/stripping while the less concentrated electrolyte cannot suppress corrosion of Zn and hydrogen evolution.

View Article and Find Full Text PDF

Predator-prey interactions shape ecosystems and can help maintain biodiversity. However, for many of the earth's most biodiverse and abundant organisms, including terrestrial arthropods, these interactions are difficult or impossible to observe directly with traditional approaches. Based on previous theory, it is likely that predator-prey interactions for these organisms are shaped by a combination of predator traits, including body size and species-specific hunting strategies.

View Article and Find Full Text PDF

Conversion/alloying materials (CAMs) provide substantially higher specific capacities than graphite, the state-of-the-art lithium-ion battery anode material. The ability to host much more lithium per unit weight and volume is, however, accompanied by significant volume changes, which challenges the realization of a stable solid electrolyte interphase (SEI). Herein, the comprehensive characterization of the composition and evolution of the SEI on transition metal (TM) doped zinc oxide as CAM model compound, is reported, with a particular focus on the impact of the TM dopant (Fe or Co).

View Article and Find Full Text PDF

As part of an extensive study of the interaction between Zn and Au in Zn/Au(111) model systems, we have systematically investigated the low-temperature (LT) nucleation and growth behavior of Zn on the Au(111) surface as well as the thermal stability of the resulting structures toward sintering, intermixing, and dissolution by scanning tunneling microscopy (STM) and x-ray photoelectron spectroscopy (XPS). Zn deposition at LT, at 105 K (STM) or 80 K (XPS), leads to nucleation and two-dimensional growth of Zn islands mainly at the elbows of the Au(111) herringbone reconstruction, with a slight preference for island formation at pinched-in (pi) rather than bulged-out (bu) elbows. Local surface intermixing during LT Zn deposition leads to local perturbations of the Au(111) herringbone reconstruction, which results in the formation of additional nucleation sites (edge sites).

View Article and Find Full Text PDF

Introduction Acute respiratory distress syndrome (ARDS) after mild traumatic brain injury (TBI) can be associated with significant morbidity and mortality. This study aimed to evaluate the potential predictive factors of ARDS development following mild TBI in trauma patients. Methods A retrospective chart review was done for adult trauma patients with mild TBI (GCS 13-15) requiring admission at our center from 2012 to 2020.

View Article and Find Full Text PDF

Among the myriad of challenges healthcare institutions face in dealing with coronavirus disease 2019 (COVID-19), screening for the detection of febrile persons entering facilities remains problematic, particularly when paired with CDC and WHO spatial distancing guidance. Aggressive source control measures during the outbreak of COVID-19 has led to re-purposed use of noncontact infrared thermometry (NCIT) for temperature screening. This study was commissioned to establish the efficacy of this technology for temperature screening by healthcare facilities.

View Article and Find Full Text PDF

Background: The use of synthetic mesh is considered too high risk, and therefore, not an option when closing a contaminated abdominal fascial defect. This study evaluated the clinical outcomes when using synthetic mesh combined with vacuum-assisted closure (VAC) dressing to close these facial defects.

Materials And Methods: From 2010 to 2016, a retrospective review was performed, including 34 patients in a single rural trauma center who underwent a damage control laparotomy in the presence of a contaminated or infected field.

View Article and Find Full Text PDF

Introduction: Adhesive small bowel obstruction (ASBO) has classically been managed with nasogastric tube decompression and watchful waiting. Our group developed an evidence-based protocol to manage ASBO utilizing a water-soluble contrast (WSC) agent. We hypothesized the protocol would decrease the length of stay (LOS) for patients admitted with ASBO along with the time interval from admission to surgery.

View Article and Find Full Text PDF

A patient with a history of multiple jejunal diverticulosis (JD) presented with a non-peritonitic abdominal pain and leucocytosis. CT scan showed a thick-walled interloop collection within the left mid-abdomen with dilated bowels and mild diffuse air-fluid levels. Exploratory laparotomy revealed multiple diverticular outpouchings in the mid-jejunum, one of which was perforated, contained within the mesentery.

View Article and Find Full Text PDF

Hydrogen production from electrocatalytic water splitting in electrolyzers is a key process to store excess electric energy produced from intermittent renewable energy sources. For proton exchange membrane (PEM) electrolyzers, carbon supported platinum particles exhibit the highest rates for the hydrogen evolution reaction (HER); however, high Pt costs limit the wide spread use of this technology. By employing a graphene layer grown on a Ru(0001) single crystal as a template for Pt nanocluster (NC) growth, we studied the dependence of the HER activity on the NC size using NCs of different sizes.

View Article and Find Full Text PDF

Rechargeable metal-sulfur batteries show great promise for energy storage applications because of their potentially high energy and low cost. The multivalent-metal based electrochemical system exhibits the particular advantage of the feasibility of dendrite-free metal anode. Calcium (Ca) represents a promising anode material owing to the low reductive potential, high capacity, and abundant natural resources.

View Article and Find Full Text PDF

Ru/Al O is a highly stable, but less active catalyst for methanation reactions. Herein we report an effective approach to significantly improve its performance in the methanation of CO /H mixtures. Highly active and stable Ru/γ-Al O catalysts were prepared by high-temperature treatment in the reductive reaction gas.

View Article and Find Full Text PDF

The development of sensitive biosensors, such as gallium nitride (GaN)-based quantum wells, transistors, etc., often makes it necessary to functionalize GaN surfaces with small molecules or even biomolecules, such as proteins. As a first step in surface functionalization, we have investigated silane adsorption, as well as the formation of very thin silane layers.

View Article and Find Full Text PDF

The influence of different additives on the oxygen reduction reaction/oxygen evolution reaction (ORR/OER) in magnesium-containing N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([BMP][TFSI]) on a glassy carbon electrode was investigated to gain a better understanding of the electrochemical processes in Mg-air batteries. 18-Crown-6 was used as a complexing agent for Mg ions to hinder the passivation caused by their reaction with ORR products such as superoxide and peroxide anions. Furthermore, borane dimethylamine complex (NBH) was used as a potential water-removing agent to inhibit electrode passivation by reacting with trace impurities of water.

View Article and Find Full Text PDF