We present the precision measurements of 11 years of daily cosmic electron fluxes in the rigidity interval from 1.00 to 41.9 GV based on 2.
View Article and Find Full Text PDFWe present the precision measurement of 2824 daily helium fluxes in cosmic rays from May 20, 2011 to October 29, 2019 in the rigidity interval from 1.71 to 100 GV based on 7.6×10^{8} helium nuclei collected with the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station.
View Article and Find Full Text PDFWe present the precision measurement of the daily proton fluxes in cosmic rays from May 20, 2011 to October 29, 2019 (a total of 2824 days or 114 Bartels rotations) in the rigidity interval from 1 to 100 GV based on 5.5×10^{9} protons collected with the Alpha Magnetic Spectrometer aboard the International Space Station. The proton fluxes exhibit variations on multiple timescales.
View Article and Find Full Text PDFPrecise knowledge of the charge and rigidity dependence of the secondary cosmic ray fluxes and the secondary-to-primary flux ratios is essential in the understanding of cosmic ray propagation. We report the properties of heavy secondary cosmic ray fluorine F in the rigidity R range 2.15 GV to 2.
View Article and Find Full Text PDFWe report the observation of new properties of primary iron (Fe) cosmic rays in the rigidity range 2.65 GV to 3.0 TV with 0.
View Article and Find Full Text PDFWe report the observation of new properties of primary cosmic rays, neon (Ne), magnesium (Mg), and silicon (Si), measured in the rigidity range 2.15 GV to 3.0 TV with 1.
View Article and Find Full Text PDFPrecision results on cosmic-ray electrons are presented in the energy range from 0.5 GeV to 1.4 TeV based on 28.
View Article and Find Full Text PDFWe present high-statistics, precision measurements of the detailed time and energy dependence of the primary cosmic-ray electron flux and positron flux over 79 Bartels rotations from May 2011 to May 2017 in the energy range from 1 to 50 GeV. For the first time, the charge-sign dependent modulation during solar maximum has been investigated in detail by leptons alone. Based on 23.
View Article and Find Full Text PDFA precision measurement of the nitrogen flux with rigidity (momentum per unit charge) from 2.2 GV to 3.3 TV based on 2.
View Article and Find Full Text PDFWe present the precision measurement from May 2011 to May 2017 (79 Bartels rotations) of the proton fluxes at rigidities from 1 to 60 GV and the helium fluxes from 1.9 to 60 GV based on a total of 1×10^{9} events collected with the Alpha Magnetic Spectrometer aboard the International Space Station. This measurement is in solar cycle 24, which has the solar maximum in April 2014.
View Article and Find Full Text PDFWe report the observation of new properties of primary cosmic rays He, C, and O measured in the rigidity (momentum/charge) range 2 GV to 3 TV with 90×10^{6} helium, 8.4×10^{6} carbon, and 7.0×10^{6} oxygen nuclei collected by the Alpha Magnetic Spectrometer (AMS) during the first five years of operation.
View Article and Find Full Text PDFA precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49×10^{5} antiproton events and 2.42×10^{9} proton events.
View Article and Find Full Text PDFKnowledge of the precise rigidity dependence of the helium flux is important in understanding the origin, acceleration, and propagation of cosmic rays. A precise measurement of the helium flux in primary cosmic rays with rigidity (momentum/charge) from 1.9 GV to 3 TV based on 50 million events is presented and compared to the proton flux.
View Article and Find Full Text PDFA precise measurement of the proton flux in primary cosmic rays with rigidity (momentum/charge) from 1 GV to 1.8 TV is presented based on 300 million events. Knowledge of the rigidity dependence of the proton flux is important in understanding the origin, acceleration, and propagation of cosmic rays.
View Article and Find Full Text PDFWe present a measurement of the cosmic ray (e^{+}+e^{-}) flux in the range 0.5 GeV to 1 TeV based on the analysis of 10.6 million (e^{+}+e^{-}) events collected by AMS.
View Article and Find Full Text PDFPrecision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented.
View Article and Find Full Text PDFA precision measurement by AMS of the positron fraction in primary cosmic rays in the energy range from 0.5 to 500 GeV based on 10.9 million positron and electron events is presented.
View Article and Find Full Text PDFA precision measurement by the Alpha Magnetic Spectrometer on the International Space Station of the positron fraction in primary cosmic rays in the energy range from 0.5 to 350 GeV based on 6.8 × 10(6) positron and electron events is presented.
View Article and Find Full Text PDF