Publications by authors named "Behdad Aghelnejad"

Diffusion processes can be followed directly by recording one-dimensional images of a selected slice at variable intervals after selective inversion of the magnetization. The resulting diffusion coefficients of H O and DMSO are consistent with earlier studies at different temperatures, obtained by monitoring the attenuation of NMR signals as a function of the gradient amplitude in gradient echo sequences.

View Article and Find Full Text PDF

We demonstrate that a molten globule-like (MG) state of a protein, usually described as a compact yet non-folded conformation that is only present in a narrow and delicate parameter range, is preserved in the high concentration environment of the protein hydrogel. We reveal mainly by means of electron paramagnetic resonance (EPR) spectroscopy that bovine serum albumin (BSA) retains the known basic MG state after a hydrogel has been formed from 20 wt% precursor solutions. At pH values of ~11.

View Article and Find Full Text PDF

Dynamic nuclear polarization of samples at low temperatures, typically between 1.2 and 4.2 K, allows one to achieve spin temperatures of as low as 2 mK so that for many nuclear isotopes the high-temperature approximation is violated for the nuclear Zeeman interaction.

View Article and Find Full Text PDF

Dissolution dynamic nuclear polarization (D-DNP) probes are usually designed for one or at most two specific nuclei. Investigation of multiple nuclei usually requires manufacturing a number of costly probes. In addition, changing the probe is a time-consuming process since a system that works at low temperature (usually between 1.

View Article and Find Full Text PDF

We report extended pH- and temperature-induced preparation procedures and explore the materials and molecular properties of different types of hydrogels made from human and bovine serum albumin, the major transport protein in the blood of mammals. We describe the diverse range of properties of these hydrogels at three levels: (1) their viscoelastic (macroscopic) behavior, (2) protein secondary structure changes during the gelation process (via ATR-FTIR spectroscopy), and (3) the hydrogel fatty acid (FA) binding capacity and derive from this the generalized tertiary structure through CW EPR spectroscopy. We describe the possibility of preparing hydrogels from serum albumin under mild conditions such as low temperatures (notably below albumin's denaturation temperature) and neutral pH value.

View Article and Find Full Text PDF