Publications by authors named "Begonya Garcia-Zapirain"

Lung cancer is considered one of the most dangerous cancers, with a 5-year survival rate, ranking the disease among the top three deadliest cancers globally. Effectively combating lung cancer requires early detection for timely targeted interventions. However, ensuring early detection poses a major challenge, giving rise to innovative approaches.

View Article and Find Full Text PDF

Background: Loneliness and social isolation are recognized as critical public health issues. Older people are at greater risk of loneliness and social isolation as they deal with things like living alone, loss of family or friends, chronic illness, and hearing loss. Loneliness increases a person's risk of premature death from all causes, including dementia, heart disease, and stroke.

View Article and Find Full Text PDF

Introduction: The Industrial Internet of Water Things (IIoWT) has recently emerged as a leading architecture for efficient water distribution in smart cities. Its primary purpose is to ensure high-quality drinking water for various institutions and households. However, existing IIoWT architecture has many challenges.

View Article and Find Full Text PDF

Cardiovascular diseases are among the major health problems that are likely to benefit from promising developments in quantum machine learning for medical imaging. The chest X-ray (CXR), a widely used modality, can reveal cardiomegaly, even when performed primarily for a non-cardiological indication. Based on pre-trained DenseNet-121, we designed hybrid classical-quantum (CQ) transfer learning models to detect cardiomegaly in CXRs.

View Article and Find Full Text PDF

This research aims to review and evaluate the most relevant scientific studies about deep learning (DL) models in the omics field. It also aims to realize the potential of DL techniques in omics data analysis fully by demonstrating this potential and identifying the key challenges that must be addressed. Numerous elements are essential for comprehending numerous studies by surveying the existing literature.

View Article and Find Full Text PDF

COVID-19 is a disease that affects the quality of life in all aspects. However, the government policy applied in 2020 impacted the lifestyle of the whole world. In this sense, the study of sentiments of people in different countries is a very important task to face future challenges related to lockdown caused by a virus.

View Article and Find Full Text PDF

Breast cancer is a common malignancy and a leading cause of cancer-related deaths in women worldwide. Its early diagnosis can significantly reduce the morbidity and mortality rates in women. To this end, histopathological diagnosis is usually followed as the gold standard approach.

View Article and Find Full Text PDF

Our aim is to contribute to the classification of anomalous patterns in biosignals using this novel approach. We specifically focus on melanoma and heart murmurs. We use a comparative study of two convolution networks in the Complex and Real numerical domains.

View Article and Find Full Text PDF

Due to the COVID-19 pandemic, computerized COVID-19 diagnosis studies are proliferating. The diversity of COVID-19 models raises the questions of which COVID-19 diagnostic model should be selected and which decision-makers of healthcare organizations should consider performance criteria. Because of this, a selection scheme is necessary to address all the above issues.

View Article and Find Full Text PDF

Fuzzy parameterized fuzzy hypersoft set (Δ-set) is more flexible and reliable model as it is capable of tackling features such as the assortment of attributes into their relevant subattributes and the determination of vague nature of parameters and their subparametric-valued tuples by employing the concept of fuzzy parameterization and multiargument approximations, respectively. The existing literature on medical diagnosis paid no attention to such features. Riesz Summability (a classical concept of mathematical analysis) is meant to cope with the sequential nature of data.

View Article and Find Full Text PDF

A computer-aided diagnosis (CAD) system requires automated stages of tumor detection, segmentation, and classification that are integrated sequentially into one framework to assist the radiologists with a final diagnosis decision. In this paper, we introduce the final step of breast mass classification and diagnosis using a stacked ensemble of residual neural network (ResNet) models (i.e.

View Article and Find Full Text PDF

Background And Objective: Computer-aided-detection (CAD) systems have been developed to assist radiologists on finding suspicious lesions in mammogram. Deep Learning technology have recently succeeded to increase the chance of recognizing abnormality at an early stage in order to avoid unnecessary biopsies and decrease the mortality rate. In this study, we investigated the effectiveness of an end-to-end fusion model based on You-Only-Look-Once (YOLO) architecture, to simultaneously detect and classify suspicious breast lesions on digital mammograms.

View Article and Find Full Text PDF

The aim of this study is to analyze the effects of lockdown using natural language processing techniques, particularly sentiment analysis methods applied at large scale. Further, our work searches to analyze the impact of COVID-19 on the university community, jointly on staff and students, and with a multi-country perspective. The main findings of this work show that the most often related words were "family", "anxiety", "house", and "life".

View Article and Find Full Text PDF

The coronavirus (COVID-19) pandemic has had a terrible impact on human lives globally, with far-reaching consequences for the health and well-being of many people around the world. Statistically, 305.9 million people worldwide tested positive for COVID-19, and 5.

View Article and Find Full Text PDF

The anterior cruciate ligament (ACL) is one of the main stabilizer parts of the knee. ACL injury leads to causes of osteoarthritis risk. ACL rupture is common in the young athletic population.

View Article and Find Full Text PDF

Currently, most mask extraction techniques are based on convolutional neural networks (CNNs). However, there are still numerous problems that mask extraction techniques need to solve. Thus, the most advanced methods to deploy artificial intelligence (AI) techniques are necessary.

View Article and Find Full Text PDF

This papers presents a comparative study of three different 3D scanning modalities to acquire 3D meshes of stoma barrier rings from ostomized patients. Computerized Tomography and Structured light scanning methods were the digitization technologies studied in this research. Among the Structured Light systems, the Go!Scan 20 and the Structure Sensor were chosen as the handheld 3D scanners.

View Article and Find Full Text PDF

hGLUTEN is a technological solution capable of detecting gluten and spoiled food. We measured the social impact of the hGLUTEN tool using two Likert scale surveys with two groups: professionals (engineers/chefs) and end-users. These data have been assessed in accordance with the social impact indicators defined for the Key Impact Pathways introduced by the European Commission for Horizon Europe and the criteria of the Social Impact Open Repository (SIOR).

View Article and Find Full Text PDF

Breast cancer analysis implies that radiologists inspect mammograms to detect suspicious breast lesions and identify mass tumors. Artificial intelligence techniques offer automatic systems for breast mass segmentation to assist radiologists in their diagnosis. With the rapid development of deep learning and its application to medical imaging challenges, UNet and its variations is one of the state-of-the-art models for medical image segmentation that showed promising performance on mammography.

View Article and Find Full Text PDF

In the last decade, the developments in healthcare technologies have been increasing progressively in practice. Healthcare applications such as ECG monitoring, heartbeat analysis, and blood pressure control connect with external servers in a manner called cloud computing. The emerging cloud paradigm offers different models, such as fog computing and edge computing, to enhance the performances of healthcare applications with minimum end-to-end delay in the network.

View Article and Find Full Text PDF

The use of mobile fitness apps has been on the rise for the last decade and especially during the worldwide SARS-CoV-2 pandemic, which led to the closure of gyms and to reduced outdoor mobility. Fitness apps constitute a promising means for promoting more active lifestyles, although their attrition rates are remarkable and adherence to their training plans remains a challenge for developers. The aim of this project was to design an automatic classification of users into adherent and non-adherent, based on their training behavior in the first three months of app usage, for which purpose we proposed an ensemble of regression models to predict their behaviour (adherence) in the fourth month.

View Article and Find Full Text PDF

Breast cancer (BCa) and prostate cancer (PCa) are the most prevalent types of cancers. We aimed to understand and analyze the care pathways for BCa and PCa patients followed at a hospital setting by analyzing their different treatment lines. We evaluated the association between different treatment lines and the lifestyle and demographic characteristics of these patients.

View Article and Find Full Text PDF

The use of artificial intelligence in health care has grown quickly. In this sense, we present our work related to the application of Natural Language Processing techniques, as a tool to analyze the sentiment perception of users who answered two questions from the CSQ-8 questionnaires with raw Spanish free-text. Their responses are related to mindfulness, which is a novel technique used to control stress and anxiety caused by different factors in daily life.

View Article and Find Full Text PDF

(1) Background: The COVID-19 pandemic has created a great impact on mental health in society. Considering the little attention paid by scientific studies to either students or university staff during lockdown, the current study has two aims: (a) to analyze the evolution of mental health and (b) to identify predictors of educational/professional experience and online learning/teaching experience. (2) Methods: 1084 university students and 554 staff in total from four different countries (Spain, Colombia, Chile and Nicaragua) participated in the study, affiliated with nine different universities, four of them Spanish and one of which was online.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionva4fldeuoq9t0g8fugd1rs3von1hmleg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once