Publications by authors named "Begona Galocha"

The HLA-B*27:05 allele and the endoplasmic reticulum-resident aminopeptidases are strongly associated with AS, a chronic inflammatory spondyloarthropathy. This study examined the effect of ERAP2 in the generation of the natural HLA-B*27:05 ligandome in live cells. Complexes of HLA-B*27:05-bound peptide pools were isolated from human ERAP2-edited cell clones, and the peptides were identified using high-throughput mass spectrometry analyses.

View Article and Find Full Text PDF

The association of ERAP1 with ankylosing spondylitis (AS)1 among HLA-B27-positive individuals suggests that ERAP1 polymorphism may affect pathogenesis by altering peptide-dependent features of the HLA-B27 molecule. Comparisons of HLA-B*27:04-bound peptidomes from cells expressing different natural variants of ERAP1 revealed significant differences in the size, length, and amount of many ligands, as well as in HLA-B27 stability. Peptide analyses suggested that the mechanism of ERAP1/HLA-B27 interaction is a variant-dependent alteration in the balance between epitope generation and destruction determined by the susceptibility of N-terminal flanking and P1 residues to trimming.

View Article and Find Full Text PDF

Molecular polymorphism influences the strong association of HLA-B27 with ankylosing spondylitis through an unknown mechanism. Natural subtypes and site-directed mutants were used to analyze the effect of altering the peptide-binding site of this molecule on its stability, interaction with tapasin, folding, and export. The disease-associated subtypes B*2705, B*2702, and B*2704 showed higher thermostability at 50 °C than all other subtypes and mutants, except some mimicking B*2702 polymorphism.

View Article and Find Full Text PDF

HLA-B27 binds peptides with R at position 2. Additionally, a substantial fraction of the HLA-B27-bound peptide repertoire has basic residues at position 1. It is unclear whether this is determined by structural complementarity with the A pocket of the peptide-binding site, by the increased availability of peptides with dibasic N-terminal sequences resulting from their cytosolic stability, or both.

View Article and Find Full Text PDF

Objective: To investigate the folding, assembly, maturation, and stability of HLA-B*1402 and B*1403, which differ by 1 amino acid change and are differentially associated with ankylosing spondylitis (AS), and to compare these features with those of B*2705.

Methods: Stable transfectants expressing B*1402, B*1403, and B*2705 were used. Folding rates were estimated from the ratio of unfolded heavy chains to folded heavy chains that had been immunoprecipitated with specific antibodies in pulse-chase experiments.

View Article and Find Full Text PDF

Objective: To investigate the maturation and folding of HLA-B27 subtypes and the relationship of these features to ankylosing spondylitis (AS).

Methods: Stable transfectants expressing B27 subtypes and site-directed mutants were used. Maturation/export rates were measured by acquisition of endoglycosidase H resistance.

View Article and Find Full Text PDF

B*2704 is strongly associated to ankylosing spondylitis in Asian populations. It differs from the main HLA-B27 allotype, B*2705, in three amino acid changes. We analyzed the influence of tapasin, TAP, and immunoproteasome induction on maturation, surface expression, and T cell allorecognition of B*2704 and compared some of these features with B*2705 and B*2706, allotypes not associated to disease.

View Article and Find Full Text PDF

Tapasin (Tpn) is a chaperone of the endoplasmic reticulum involved in peptide loading to MHC class I proteins. The influence of mouse Tpn (mTpn) on the HLA-B*2705-bound peptide repertoire was analyzed to characterize the species specificity of this chaperone. B*2705 was expressed on Tpn-deficient human 721.

View Article and Find Full Text PDF

The bases that support the versatility of the T cell receptor (TCR) to generate distinct T cell responses remain unclear. We have previously shown that mutant cells in the transmembrane domain of TCRbeta chain are impaired in TCR-induced apoptosis but are not affected in other functions. Here we describe the biochemical mechanisms by which this mutant receptor supports some T cell responses but fails to induce apoptosis.

View Article and Find Full Text PDF