Opioids are the most effective painkillers, but their benefit-risk balance often hinder their therapeutic use. WLB-73502 is a dual, bispecific compound that binds sigma-1 (S1R) and mu-opioid (MOR) receptors. WLB-73502 is an antagonist at the S1R.
View Article and Find Full Text PDFBackground And Purpose: Osteoarthritic pain is a chronic disabling condition lacking effective treatment. Continuous use of opioid drugs during osteoarthritic pain induces tolerance and may result in dose escalation and abuse. Sigma-1 (σ1) receptors, a chaperone expressed in key areas for pain control, modulates μ-opioid receptor activity and represents a promising target to tackle these problems.
View Article and Find Full Text PDFOsteoarthritis is the most common musculoskeletal disease worldwide, often characterized by degradation of the articular cartilage, chronic joint pain and disability. Cognitive dysfunction, anxiety and depression are common comorbidities that impact the quality of life of these patients. In this study, we evaluated the involvement of sigma-1 receptor (σ1R) on the nociceptive, cognitive and emotional alterations associated with chronic osteoarthritis pain.
View Article and Find Full Text PDFSigma-1 receptor (σR) antagonism increases the effects of morphine on acute nociceptive pain. S1RA (E-52862) is a selective σR antagonist widely used to study the role of σRs. S1RA alone exerted antinociceptive effect in the formalin test in rats and increased noradrenaline levels in the spinal cord, thus accounting for its antinociceptive effect.
View Article and Find Full Text PDFSelective serotonin reuptake inhibitors (SSRIs) regulate brain noradrenergic neurotransmission both at somatodendritic and nerve terminal areas. Previous studies have demonstrated that noradrenaline (NA) reuptake inhibitors are able to desensitize α-adrenoceptor-mediated responses. The present study was undertaken to elucidate the effects of repeated treatment with the SSRI citalopram on the α-adrenoceptor sensitivity in locus coeruleus (LC) and prefrontal cortex (PFC), by using in vivo microdialysis and electrophysiological techniques, and in vitro stimulation of [S]GTPγS binding autoradiography.
View Article and Find Full Text PDFWe have previously shown that the selective sigma-1 receptor (σ1 R) antagonist S1RA (E-52862) inhibits neuropathic pain and activity-induced spinal sensitization in various pre-clinical pain models. In this study we characterized both the behavioral and the spinal neurochemical effects of S1RA in the rat formalin test. Systemic administration of S1RA produced a dose-related attenuation of flinching and lifting/licking behaviors in the formalin test.
View Article and Find Full Text PDFWe evaluated the effects of σ1-receptor inhibition on μ-opioid-induced mechanical antinociception and constipation. σ1-Knockout mice exhibited marked mechanical antinociception in response to several μ-opioid analgesics (fentanyl, oxycodone, morphine, buprenorphine, and tramadol) at systemic (subcutaneous) doses that were inactive in wild-type mice and even unmasked the antinociceptive effects of the peripheral μ-opioid agonist loperamide. Likewise, systemic (subcutaneous) or local (intraplantar) treatment of wild-type mice with the selective σ1 antagonists BD-1063 [1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine dihydrochloride] or S1RA [4-[2-[[5-methyl-1-(2-naphthalenyl)1H-pyrazol-3-yl]oxy]ethyl] morpholine hydrochloride] potentiated μ-opioid antinociception; these effects were fully reversed by the σ1 agonist PRE-084 [2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate) hydrochloride], showing the selectivity of the pharmacological approach.
View Article and Find Full Text PDFRationale: Selective serotonin reuptake inhibitors (SSRIs), in addition to being able to enhance serotonergic neurotransmission, are able to modulate other brain systems involved in depression.
Objectives: This study evaluates the neurochemical effect of the SSRI citalopram on brain noradrenergic activity and the serotonin receptor involved in this effect.
Methods: Dual-probe microdialysis in the locus coeruleus (LC) and prefrontal cortex (PFC) was performed in freely awake rats.
While opioids are potent analgesics widely used in the management of pain, a number of well-known adverse effects limit their use. The sigma-1 receptor is a ligand-regulated molecular chaperone involved in pain processing, including modulation of opioid antinociception. However, data supporting the potential use of sigma-1 receptor ligands as suitable opioid adjuvants are based on studies that use non selective ligands.
View Article and Find Full Text PDFMeasurement of neurotransmitters in the spinal dorsal horn in conscious animals remains a technical challenge. Here we applied concentric microdialysis to measure formalin-induced glutamate (Glu) release in the ipsilateral dorsal horn in conscious, freely-moving rats. Hind paw formalin injection induced flinching nociceptive behaviors accompanied by increased Glu in the dorsal horn (maximum = 294%).
View Article and Find Full Text PDFThe therapeutic activity of noradrenaline reuptake inhibitors (NaRIs) and serotonin reuptake inhibitors (SSRIs) as antidepressant is based on their ability to increase monoamine concentrations in the synaptic cleft. α(2)-Adrenoceptors inhibit noradrenaline (NA) release, which modulates antidepressant neurochemical activity. The present study assesses the influence of the addition of the selective α(2)-adrenoceptor antagonist RS79948 to the NaRI reboxetine and the SSRI citalopram on brain extracellular NA.
View Article and Find Full Text PDFRationale: The origin and regulation of noradrenaline (NA) in the locus coeruleus (LC) is unknown.
Objectives: The neurochemical features of NA overflow (nerve impulse dependence, neurotransmitter synthesis, vesicle storage, reuptake, alpha2-adrenoceptor-mediated regulation) were characterized in the LC.
Methods: Brain microdialysis was performed in awake rats.
The regulation of noradrenaline release in the rat cingulate cortex by somatodendritic alpha(2)-adrenoceptors placed in the locus coeruleus was evaluated by dual-probe microdialysis. The alpha(2)-adrenoceptor antagonists BRL44408 (2-[2H-(1-methyl-1,3-dihydroisoindole)methyl]-4,5-dihydroimidazole), RS79948 ((8,12,13)-decahydro-3methoxy-12-(ethylsulphonyl)-6H-isoquino[2,1-g][1,6]-naphthyridine) and RX821002 (2-methoxyidazoxan) administered by reverse dialysis into the locus coeruleus increased concentration-dependently (0.01-100 microM) noradrenaline release in the cortex (maximal effects 170+/-30%, 543+/-17%, 195+/-26%, respectively).
View Article and Find Full Text PDF