Publications by authors named "Begona Escribano"

Article Synopsis
  • Melatonin (MLT) is known for its antioxidant, anti-inflammatory, and antiapoptotic properties, but its antibacterial effects are less explored.
  • In this study, Cyrene™ was tested as a new solvent for MLT, as traditional solvents like DMSO can show antimicrobial effects themselves.
  • Results showed MLT did not inhibit bacterial growth; rather, the observed inhibition was due to Cyrene™ itself, indicating that MLT's antibacterial role can't be properly evaluated without other solvent options.
View Article and Find Full Text PDF

There is substantial evidence supporting the neuroprotective effects of the MIND diet in neurodegenerative diseases like Parkinson's and Alzheimer's. Our aim was to evaluate the impact of a nutritional intervention (NI) with this diet on multiple sclerosis (MS) patients. The study was conducted in two stages.

View Article and Find Full Text PDF

Melatonin (MLT) is a hormone that exists in all living organisms, including bacteria, yeast, fungi, animals, and plants, many of which are ingested daily in the diet. However, the exact concentrations of melatonin in each of the foods and the effect on health of the intake of foods rich in MLT are not known. Therefore, the aim of this review was to gather the available information on the melatonin content of different foods and to evaluate the effect that this hormone has on different pathologies.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is characterized by a variety of symptoms that have a major impact on quality of life (QoL) even in early stages. In addition to individual motor, sensory, visual disturbances, and brainstem and sphincter disorders, which are expressed through the widely used Expanded Disability Status Scale (EDSS), other manifestations of MS have a detrimental effect on overall functioning and quality of life, such as cognitive impairment, depression, anxiety, fatigue, and pain. However, when talking about QoL, categorical definitions cannot be used because although the concept is generally understood, it is highly nuanced.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a very complex and heterogeneous disease, with an unknown etiology and which, currently, remains incurable. For this reason, animal models are crucial to investigate this disease, which has increased in prevalence in recent years, affecting 2.8 million people worldwide, and is the leading cause of non-traumatic disability in young adults between the ages of 20-30years.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic demyelinating disease, whose etiology is not yet fully understood, although there are several factors that can increase the chances of suffering from it. These factors include nutrition, which may be involved in the pathogenesis of the disease. In relation to nutrition, docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid (n-3 PUFA), has emerged as an important player in the regulation of neuroinflammation, being considered a pleiotropic molecule.

View Article and Find Full Text PDF

Oxidative stress is heavily involved in several pathological features of Multiple Sclerosis (MS), such as myelin destruction, axonal degeneration, and inflammation. Different therapies have been shown to reduce the oxidative stress that occurs in the animal model of MS, experimental autoimmune encephalomyelitis (EAE). Some of these therapies are transcranial magnetic stimulation (TMS), extra virgin olive oil (EVOO) and S-allyl cysteine (SAC).

View Article and Find Full Text PDF

The high-salt diet (HSD) has been associated with cognitive dysfunction by attacking the cerebral microvasculature, through an adaptive response, initiated in the intestine and mediated by Th17 cells. In the animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), it has been described that NaCl causes an increase in T cell infiltration in the central nervous system. NaCl also promotes macrophage response and Th17 cell differentiation, worsening the course of the disease.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic has raised particular concern for people with Multiple Sclerosis, as these people are believed to be at increased risk of infection, especially those being treated with disease-modifying therapies. Therefore, the objective of this review was to describe how COVID-19 affects people who suffer from Multiple Sclerosis, evaluating the risk they have of suffering an infection by this virus, according to the therapy to which they are subjected as well as the immune response of these patients both to infection and vaccines and the neurological consequences that the virus can have in the long term. The results regarding the increased risk of infection due to treatment are contradictory.

View Article and Find Full Text PDF

Background: Melatonin is an indole hormone secreted primarily by the pineal gland that showing anti-oxidant, anti-inflammatory and anti-apoptotic capacity. It can play an important role in the pathophysiological mechanisms of various diseases. In this regard, different studies have shown that there is a relationship between Melatonin and Multiple Sclerosis (MS).

View Article and Find Full Text PDF

Background: Melatonin has been related to the pathophysiology of multiple sclerosis (MS), and its anti-inflammatory and immunomodulatory properties have been proved in numerous neurodegenerative diseases. This study aimed to find out whether a melatonin supplement in MS is able to act as a benefit to its clinical status, i.e.

View Article and Find Full Text PDF

Background And Objectives: Experimental Autoimmune Encephalomyelitis (EAE) in rats closely reproduces Multiple Sclerosis (MS), a disease characterized by neuroinflammation and oxidative stress that also appears to extend to other organs and their compartments. The origin of MS is a matter for discussion, but it would seem that altering certain bacterial populations present in the gut may lead to a proinflammatory condition due to the bacterial Lipopolysaccharides (LPS) in the so-called brain-gut axis. The casein and lactose in milk confer anti-inflammatory properties and immunomodulatory effects.

View Article and Find Full Text PDF

Transcranial Magnetic Stimulation (TMS) is widely used in neurophysiology to study cortical excitability. Research over the last few decades has highlighted its added value as a potential therapeutic tool in the treatment of a broad range of psychiatric disorders. More recently, a number of studies have reported beneficial and therapeutic effects for TMS in neurodegenerative conditions and strokes.

View Article and Find Full Text PDF

The hypothesis posed was whether being part of a football/soccer team influenced the quality of life (QL) of the people who participated in it since their perception of themselves is enhanced by factors, such as self-determination, social inclusion, emotional well-being, physical well-being, material well-being, rights, personal development, and internal relationships. The objective was to evaluate the QL of people with Down Syndrome (DS) using their self-perception ( = 39) and the perception of the informants (family members, teachers) ( = 39). The KidsLife-Down Scale, with a few modifications, was used.

View Article and Find Full Text PDF

Introduction: Continuous improvement in cellular and molecular biology has led to the development of diverse advanced therapies. These include cell therapy and gene therapy, among others. Nanomedicine can also be used for therapeutic purposes.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a neurodegenerative condition whose manifestation and clinical evolution can present themselves in very different ways. Analogously, its treatment has to be personalized and the patient's response may be idiosyncratic. At this moment there is no cure for it, in addition to its clinical course sometimes being torpid, with a poor response to any treatment.

View Article and Find Full Text PDF

Transcranial Magnetic Stimulation (TMS) is a technique based on the principles of electromagnetic induction. It applies pulses of magnetic radiation that penetrate the brain tissue, and it is a non-invasive, painless, and practically innocuous procedure. Previous studies advocate the therapeutic capacity of TMS in several neurodegenerative and psychiatric processes, both in animal models and in human studies.

View Article and Find Full Text PDF

This study reveals the existence of oxidative stress (reactive oxygen species (ROS)) in non-nervous organs and tissues in multiple sclerosis (MS) by means of a model of experimental autoimmune encephalomyelitis (EAE) in rats. This model reproduces a similar situation to MS, as well as its relationship with intestinal microbiota starting from the changes in bacterial lipopolysaccharide levels (LPS) in the outer wall of the gram-negative bacteria. Finally, the administration of extra-virgin olive oil (EVOO), hydroxytirosol (HT), and oleic acid (OA) exert beneficial effects.

View Article and Find Full Text PDF

In recent years, numerous investigations focused on the pleiotropic actions of vitamin D have been carried out. These actions include the participation of this molecule in neurophysiological and neuropathological processes. As a consequence, abundant scientific literature on the role of this vitamin in neurodegenerative entities has emerged, even concerning clinical studies.

View Article and Find Full Text PDF

In the last decades, different transcranial magnetic stimulation protocols have been developed as a therapeutic tool against neurodegenerative and psychiatric diseases, although the biochemical, molecular and cellular mechanisms underlying these effects are not well known. Recent data show that those magnetic stimulation protocols showing beneficial effects could trigger an anti-oxidant action that would favour, at least partially, their therapeutic effect. We have aimed to review the molecular effects related to oxidative damage induced by this therapeutic strategy, as well as from them addressing a broader definition of the anti-oxidant concept.

View Article and Find Full Text PDF

The effects of transcranial magnetic stimulation (TMS), natalizumab (nata), dimethyl fumarate (DMF) and dexamethasone (DEX) on clinical score and oxidative stress produced by a single dose of myelin oligodendrocyte glycoprotein (MOG) in tail of Dark Agouti rats was studied. TMS (60Hz and 0.7 mT), nata (5mg/kg), DMF (15mg/kg) and DEX (300μg/kg) was applied for 21 after the administration of MOG (150μg).

View Article and Find Full Text PDF

Background & Objective: Advances in the knowledge of the microbiota and concepts related to it have triggered a wake-up call in biomedicine. The development in various scientific areas has enabled a better and broader approach to everything concerning the set of families of microorganisms that coexist with an individual and are able to function as one or more organs in its body. Among the aforementioned scientific areas, those worth mentioning are the advances/progress in biotechnological resources and, in particular, molecular biology and related areas.

View Article and Find Full Text PDF

Experimental autoimmune encephalomyelitis (EAE) reproduces a multiple sclerosis (MS)-like experimental model. The main objective was to evaluate the effect of extremely low-frequency electromagnetic fields (EL-EMF) application, like a paradigm of transcranial magnetic stimulation (TMS) in the development of EAE. Rats were injected with a single dose of 150 μg of myelin oligodendrocyte glycoprotein (MOG, fragment 35-55) to produce experimental MS.

View Article and Find Full Text PDF

Aims: Experimental autoimmune encephalomyelitis (EAE) is considered a valid experimental model for multiple sclerosis, a chronic neuroinflammatory condition of the central nervous system. Additionally, some evidence has shown that some microbial products such as the bacterial lipopolysaccharide could lead to the activation of reactive immune cells, triggering neuroinflammation. Several studies have found that transcranial magnetic stimulation (TMS) may exert a neuroprotective effect.

View Article and Find Full Text PDF