An x-ray multilayer mirror on a spherical substrate designed for near-normal incidence with a photon energy of ∼738 eV (F Heα) was procured and tested. This device is intended to be used for in-flight radiography of the shell in inertial confinement fusion experiments with cryogenic targets on the OMEGA laser at the Laboratory for Laser Energetics. Experiments in self-emission on a small (∼10 J) laser system showed that the reflectivity of the mirror is high enough to record an image at laser energies as low as 0.
View Article and Find Full Text PDFOptical parametric chirped-pulse amplification (OPCPA) using high-energy Nd:glass lasers has the potential to produce ultra-intense pulses (>10 W/cm). We report on the performance of the final high-efficiency amplifier in an OPCPA system based on large-aperture (63 × 63-mm) partially deuterated potassium dihydrogen phosphate (DKDP) crystals. The seed beam (180-nm bandwidth, 110 mJ) was provided by the preceding OPCPA stages.
View Article and Find Full Text PDFTalbot-Lau x-ray interferometry is a refraction-based diagnostic that can map electron density gradients through phase-contrast methods. The Talbot-Lau x-ray deflectometry (TXD) diagnostics have been deployed in several high energy density experiments. To improve diagnostic performance, a monochromatic TXD was implemented on the Multi-Tera Watt (MTW) laser using 8 keV multilayer mirrors (Δθ/θ = 4.
View Article and Find Full Text PDFWe present a theoretical and experimental analysis of the signal phase introduced by the pump-beam wavefront and spatial profile during optical parametric amplification (OPA) process. The theory predicts the appearance of an additional wavefront in the amplified signal beam that is proportional to the spatial derivative of the pump-beam wavefront. The effect of the pump-beam profile on the signal-beam wavefront is also investigated.
View Article and Find Full Text PDFThe multiterawatt (MTW) laser, built initially as the prototype front end for a petawatt laser system, is a 1053 nm hybrid system with gain from optical parametric chirped-pulse amplification (OPCPA) and Nd:glass. Compressors and target chambers were added, making MTW a complete laser facility (output energy up to 120 J, pulse duration from 20 fs to 2.8 ns) for studying high-energy-density physics and developing short-pulse laser technologies and target diagnostics.
View Article and Find Full Text PDFTalbot-Lau x-ray interferometry has been implemented to map electron density gradients in High Energy Density Physics (HEDP) experiments. X-ray backlighter targets have been evaluated for Talbot-Lau X-ray Deflectometry (TXD). Cu foils, wires, and sphere targets have been irradiated by 10-150 J, 8-30 ps laser pulses, while two pulsed-power generators (∼350 kA, 350 ns and ∼200 kA, 150 ns) have driven Cu wire, hybrid, and laser-cut x-pinches.
View Article and Find Full Text PDFHigh-energy deep ultraviolet (UV) sources are required for high-density plasma diagnostics. The fifth-harmonic generation of large-aperture neodymium lasers in ammonium dihydrogen phosphate (ADP) can significantly increase UV energies due to the availability of large ADP crystals. Noncritical phase matching in ADP for (ω + 4ω) was achieved by cooling a 65 × 65-mm crystal in a two-chamber cryostat to 200 K.
View Article and Find Full Text PDFThe picosecond evolution of non-Maxwellian electron distribution functions was measured in a laser-produced plasma using collective electron plasma wave Thomson scattering. During the laser heating, the distribution was measured to be approximately super-Gaussian due to inverse bremsstrahlung heating. After the heating laser turned off, collisional ionization caused further modification to the distribution function while increasing electron density and decreasing temperature.
View Article and Find Full Text PDFLarge diameter, flying focus driven ionization waves of arbitrary velocity (IWAV's) were produced by a defocused laser beam in a hydrogen gas jet, and their spatial and temporal electron density characteristics were measured using a novel, spectrally resolved interferometry diagnostic. A simple analytic model predicts the effects of power spectrum non-uniformity on the IWAV trajectory and transverse profile. This model compares well with the measured data and suggests that spectral shaping can be used to customize IWAV behavior and increase controlled propagation of ionization fronts for plasma-photonics applications.
View Article and Find Full Text PDFTalbot-Lau x-ray interferometers can map electron density gradients in High Energy Density (HED) samples. In the deflectometer configuration, it can provide refraction, attenuation, elemental composition, and scatter information from a single image. X-ray backlighters in Talbot-Lau deflectometry must meet specific requirements regarding source size and x-ray spectra, amongst others, to accurately diagnose a wide range of HED experiments.
View Article and Find Full Text PDFDirect measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot-dense-plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy.
View Article and Find Full Text PDFFlying focus is a technique that uses a chirped laser beam focused by a highly chromatic lens to produce an extended focal region within which the peak laser intensity can propagate at any velocity. When that intensity is high enough to ionize a background gas, an ionization wave will track the intensity isosurface corresponding to the ionization threshold. We report on the demonstration of such ionization waves of arbitrary velocity.
View Article and Find Full Text PDFThe fifth harmonic of a pulsed Nd:YLF laser has been realized in a cascade of nonlinear crystals with a record efficiency of 30%. Cesium lithium borate is used in a Type-I configuration for sum-frequency mixing of 1053 and 266 nm, producing 211 nm pulses. Flat-topped beam profiles and pulse shapes optimize efficiency.
View Article and Find Full Text PDFTalbot-Lau x-ray interferometry uses incoherent x-ray sources to measure refraction index changes in matter. These measurements can provide accurate electron density mapping through phase retrieval. An adaptation of the interferometer has been developed in order to meet the specific requirements of high-energy density experiments.
View Article and Find Full Text PDFWe describe a parametric-amplification-based front end for seeding high-energy Nd:glass laser systems. The front end delivers up to 200 mJ by parametric amplification in 2.5-ns flat-in-time pulses tunable over more than 15 nm.
View Article and Find Full Text PDFPicosecond time-resolved x-ray spectroscopy is used to measure the spectral line shift of the 1s2p-1s^{2} transition in He-like Al ions as a function of the instantaneous plasma conditions. The plasma temperature and density are inferred from the Al He_{α} complex using a nonlocal-thermodynamic-equilibrium atomic physics model. The experimental spectra show a linearly increasing redshift for electron densities of 1-5×10^{23}cm^{-3}.
View Article and Find Full Text PDFA picosecond, time-resolved, x-ray spectroscopy platform was developed to study the thermal line emission from rapidly heated solid targets containing buried aluminum or iron layers. The targets were driven by high-contrast 1ω or 2ω laser pulses at focused intensities up to 1 × 10 W/cm. The experimental platform combines time-integrating and time-resolved x-ray spectrometers.
View Article and Find Full Text PDFTalbot-Lau X-ray deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters.
View Article and Find Full Text PDFAn ultrafast streaked extreme-ultraviolet (XUV) spectrometer (5-20 nm) was developed to measure the temperature dynamics in rapidly heated samples. Rapid heating makes it possible to create exotic states of matter that can be probed during their inertial confinement time-tens of picoseconds in the case of micron-sized targets. In contrast to other forms of pyrometry, where the temperature is inferred from bulk x-ray emission, XUV emission is restricted to the sample surface, allowing for a temperature measurement at the material-vacuum interface.
View Article and Find Full Text PDFX-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses.
View Article and Find Full Text PDFFour-color laser diagnostics were developed for Z-pinch and laser plasma at the 1 MA pulsed power generator. Four harmonics of the Nd:YAG laser at wavelengths of 1064, 532, 266, and 213 nm were produced during the cascade conversion in three nonlinear crystals and propagated together in one beampath. Deep UV probing allows better penetration of the dense plasma.
View Article and Find Full Text PDFThe Bragg angle, rocking curve, and reflection efficiency of a quartz crystal x-ray imager (Miller indices 234) were measured at photon energy of 15.6909 keV, corresponding to the K(α2) line of Zr, using the X15A beamline at the National Synchrotron Light Source at Brookhaven National Laboratory. One flat and three spherically curved samples were tested.
View Article and Find Full Text PDFTime-resolved K(α) spectroscopy has been used to infer the hot-electron equilibration dynamics in high-intensity laser interactions with picosecond pulses and thin-foil solid targets. The measured K(α)-emission pulse width increases from ~3 to 6 ps for laser intensities from ~10(18) to 10(19) W/cm(2). Collisional energy-transfer model calculations suggest that hot electrons with mean energies from ~0.
View Article and Find Full Text PDFHigh-resolution images of the rear-surface optical emission from high-intensity (I approximately 10(19) W/cm(2)) laser illuminated metal foils have been recorded using coherent transition radiation (CTR). CTR is generated as relativistic electrons, generated in high-intensity laser-plasma interactions, exit the target's rear surface and move into vacuum. A transition radiation diagnostic (TRD) records time-integrated images in a 24 nm bandwidth window around lambda=529 nm.
View Article and Find Full Text PDF