Publications by authors named "Beetz C"

Recently, a novel African ancestry specific Parkinson's disease (PD) risk signal was identified at the gene encoding glucocerebrosidase ( ). This variant (rs3115534-G) is carried by ∼50% of West African PD cases and imparts a dose-dependent increase in risk for disease. The risk variant has varied frequencies across African ancestry groups, but is almost absent in European and Asian ancestry populations.

View Article and Find Full Text PDF

Four genes-DAND5, PKD1L1, MMP21, and CIROP-form a genetic module that has specifically evolved in vertebrate species that harbor motile cilia in their left-right organizer (LRO). We find here that CIROZ (previously known as C1orf127) is also specifically expressed in the LRO of mice, frogs, and fish, where it encodes a protein with a signal peptide followed by 3 zona pellucida N domains, consistent with extracellular localization. We report 16 individuals from 10 families with bi-allelic CIROZ inactivation variants, which cause heterotaxy with congenital heart defects.

View Article and Find Full Text PDF

The mitochondrial ribosome (mitoribosome) synthesizes 13 protein subunits of the oxidative phosphorylation system encoded by the mitochondrial genome. The mitoribosome is composed of 12S rRNA, 16S rRNA, and 82 mitoribosomal proteins encoded by nuclear genes. To date, variants in 12 genes encoding mitoribosomal proteins are associated with rare monogenic disorders and frequently show combined oxidative phosphorylation deficiency.

View Article and Find Full Text PDF

Retinoblastoma (RB) proteins are highly conserved transcriptional regulators that play important roles during development by regulating cell-cycle gene expression. RBL2 dysfunction has been linked to a severe neurodevelopmental disorder. However, to date, clinical features have only been described in six individuals carrying five biallelic predicted loss of function (pLOF) variants.

View Article and Find Full Text PDF

Recently, an African ancestry-specific Parkinson disease (PD) risk signal was identified at the gene encoding glucocerebrosidase (GBA1). This variant ( rs3115534 -G) is carried by ~50% of West African PD cases and imparts a dose-dependent increase in risk for disease. The risk variant has varied frequencies across African ancestry groups but is almost absent in European and Asian ancestry populations.

View Article and Find Full Text PDF

Background: The p.Ser71Arg RAB32 variant was recently associated with Parkinson's disease (PD).

Objective: The aim was to investigate the presence of RAB32 variants in a large multiethnic group of individuals affected and unaffected by PD.

View Article and Find Full Text PDF

Pathogenic variants in the gene represent the most common cause of autosomal dominant Parkinson's disease (PD) worldwide. We identified the p.L1795F variant in 14 White/European ancestry PD patients, including two families with multiple affected carriers and seven additional affected individuals with familial PD using genotyping and sequencing data from more than 50,000 individuals through GP2, AMP-PD, PDGENEration, and CENTOGENE.

View Article and Find Full Text PDF

variants and decreased glucocerebrosidase (GCase) activity are implicated in Parkinson's disease (PD). We investigated the hypothesis that increased levels of glucosylceramide (GlcCer), one of GCase main substrates, are involved in PD pathogenesis. Using multiple genetic methods, we show that not , is the main regulator of plasma GlcCer levels, yet it is not involved in PD pathogenesis.

View Article and Find Full Text PDF

The mitoribosome synthesizes 13 protein subunits of the oxidative phosphorylation system encoded by the mitochondrial genome. The mitoribosome is composed of 12S rRNA, 16S rRNA and 82 mitoribosomal proteins encoded by nuclear genes. To date, variants in 12 genes encoding mitoribosomal proteins are associated with rare monogenic disorders, and frequently show combined oxidative phosphorylation deficiency.

View Article and Find Full Text PDF

We report on a male patient who was investigated for frequent apneic episodes, feeding problems, hypotonia, and left-sided middle cerebral artery infarction in the magnetic resonance imaging at 2 weeks of age. Primary diagnosis of dihydropyrimidinase (DPYS) deficiency was suspected following the analysis of urine for organic acid; DPYS deficiency was strongly suggested by the presence of dihydrouracil, thymine, and uracil. Subsequent genetic evaluation by whole exome sequencing revealed 2 separate mutations, homozygous pathogenic variant c.

View Article and Find Full Text PDF
Article Synopsis
  • Current estimates of genetic variants linked to Parkinson's disease (PD) show limitations and biases across different populations, complicating patient recruitment for clinical trials focused on genetic therapies.
  • The Rostock Parkinson's disease (ROPAD) study analyzes data from 12,580 PD patients across 16 countries, revealing that 14.8% had a genetic test positive for PD-related variants, particularly in specific genes like GBA1 and LRRK2.
  • Findings indicate higher positivity rates in patients with earlier onset (age ≤ 50) or a positive family history, emphasizing the need for more extensive genetic investigation to improve patient stratification for future clinical trials.
View Article and Find Full Text PDF
Article Synopsis
  • * A study examined 28 patients from 18 families with loss of function (LOF) variants, revealing a spectrum of neurological and developmental issues including global developmental delay, intellectual disabilities, microcephaly, and behavioral abnormalities.
  • * Research using fruit flies showed that mutations in the RBF gene mirrored symptoms seen in patients, affecting brain morphology and movement, and highlighted the importance of ongoing RBL2 expression in mature neurons for normal locomotion, suggesting potential therapeutic avenues.
View Article and Find Full Text PDF

The most common form of hereditary spastic paraplegia (HSP), SPG4 is caused by single nucleotide variants and microrearrangements in the gene. The high percentage of multi-exonic deletions or duplications observed in SPG4 patients is predisposed by the presence of a high frequency of sequences in the gene sequence. In the present study, we analyzed DNA and RNA samples collected from patients with different microrearrangements in to map gene breakpoints and evaluate the mutation mechanism.

View Article and Find Full Text PDF

We describe humans with rare biallelic loss-of-function variants impairing pre-α T cell receptor (pre-TCRα) expression. Low circulating naive αβ T cell counts at birth persisted over time, with normal memory αβ and high γδ T cell counts. Their TCRα repertoire was biased, which suggests that noncanonical thymic differentiation pathways can rescue αβ T cell development.

View Article and Find Full Text PDF

Dysfunctional RNA processing caused by genetic defects in RNA processing enzymes has a profound impact on the nervous system, resulting in neurodevelopmental conditions. We characterized a recessive neurological disorder in 18 children and young adults from 10 independent families typified by intellectual disability, motor developmental delay and gait disturbance. In some patients peripheral neuropathy, corpus callosum abnormalities and progressive basal ganglia deposits were present.

View Article and Find Full Text PDF

The potential of circulating tumor DNA (ctDNA) as a biomarker to assess the progression of various solid tumors has been explored extensively. In this study, we investigated the feasibility of utilizing a ctDNA sequencing panel specifically designed to target the most frequently mutated genomic regions in colon and pancreas cancers. Through somatic analysis of colon and pancreas tumors, we targeted 27 regions within eight genes.

View Article and Find Full Text PDF
Article Synopsis
  • The protein ACBD6 is important for lipid and protein acylation, but its exact role and effects of its defects on human health remain unclear.
  • Researchers found 45 individuals from 28 families with harmful mutations in ACBD6, leading to a variety of severe developmental and movement disorders.
  • Model organisms like zebrafish and Xenopus were used in studies to better understand ACBD6's function in protein modification and its localization in peroxisomes, which could help explain the associated disease symptoms.
View Article and Find Full Text PDF

Gaucher disease (GD) is a rare autosomal recessive disorder arising from bi-allelic variants in the gene, encoding glucocerebrosidase. Deficiency of this enzyme leads to progressive accumulation of the sphingolipid glucosylsphingosine (lyso-Gb1). The international, multicenter, observational "Lyso-Gb1 as a Long-term Prognostic Biomarker in Gaucher Disease"-LYSO-PROOF study succeeded in enrolling a cohort of 160 treatment-naïve GD patients from diverse geographic regions and evaluated the potential of lyso-Gb1 as a specific biomarker for GD.

View Article and Find Full Text PDF

MED27 is a subunit of the Mediator multiprotein complex, which is involved in transcriptional regulation. Biallelic MED27 variants have recently been suggested to be responsible for an autosomal recessive neurodevelopmental disorder with spasticity, cataracts and cerebellar hypoplasia. We further delineate the clinical phenotype of MED27-related disease by characterizing the clinical and radiological features of 57 affected individuals from 30 unrelated families with biallelic MED27 variants.

View Article and Find Full Text PDF

Glucosylsphingosine (lyso-Gb1), the deacylated form of glucocerebroside, was shown to be the most specific and sensitive biomarker for diagnosing Gaucher disease (GD). The aim of this study is to assess the contribution of lyso-Gb1 at the time of diagnosis for treatment decisions in naïve patients with GD. Newly diagnosed patients from July 2014 to November 2022 were included in this retrospective cohort study.

View Article and Find Full Text PDF