Publications by authors named "Beeta Rani Khalkho"

Herein, a rapid, precise alpha-cyclodextrin (α-CD) based gold nanoparticles (AuNPs) for selective detection of malathion pesticides has been reported. These are organophosphorus pesticides (OPPs), that can cause a neurological disease by inhibiting the activity of acetylcholinesterase (AChE). It is important to exploit a quick and sensitive approach for monitoring OPPs.

View Article and Find Full Text PDF

The present work reported is a simple and selective method for the colorimetrical detection of l-cysteine in (or lentils) using Au-Ag core-shell (Au core Ag shell) composite nanoparticles as a chemical probe. The phenomenon is based on the color change of composite nanoparticles from yellowish brown to light blue, followed by a shift of the localized surface plasmon resonance (LSPR) absorption band in the UV-visible region (, 200-800 nm) with the addition of l-cysteine into the solution of bimetallic nanoparticles. The mechanism for the detection of l-cysteine is based on the electrostatic interaction of the metal ion with the thiol group of the amino acid, which causes the red shift of the LSPR band at 685 nm.

View Article and Find Full Text PDF

We report a simple and cost-effective paper-based and colorimetric dual-mode detection of As(iii) and Pb(ii) based on glucose-functionalized gold nanoparticles under optimized conditions. The paper-based detection of As(iii) and Pb(ii) is based on the change in the signal intensity of AuNPs/Glu fabricated on a paper substrate after the deposition of the analyte using a smartphone, followed by processing with the ImageJ software. The colorimetric method is based on the change in the color and the red shift of the localized surface plasmon resonance (LSPR) absorption band of AuNPs/Glu in the region of 200-800 nm.

View Article and Find Full Text PDF

This paper describes the sensing application of citrate functionalized gold nanoparticles (AuNPs) employing for the determination of L-cysteine in food and water samples. It is established with diffuse reflectance Fourier transform infrared (DRS-FTIR) spectroscopic analysis. The disappearance of the thiol (-SH) band in the FTIR spectra and the shift in the peaks of the amino group (NH) and carboxylate group (-COO) indicated the Au-S interaction and the aggregation of the NPs.

View Article and Find Full Text PDF

The use of L-cysteine modified silver nanoparticles (Cys-capped AgNPs) as a colorimetric probe for determination of vitamin B1 (thiamine) is described in the present work. This method is based on the measurement of red shift of localized surface plasmon resonance (LSPR) band of Cys-capped AgNPs in the region of 200-800 nm. The color of Cys-capped AgNPs was changed from yellow to colorless by the addition of vitamin B1.

View Article and Find Full Text PDF

A novel, facile, and low-cost method was developed for determination of cetyltrimethylammonium (CTA) cationic surfactant in water samples using diffuse reflectance Fourier transform IR (FTIR) spectroscopy and colorimetry. Cetyltrimethylammonium bromide was chosen as a model compound to demonstrate the optimization of the method for determination of CTA in water samples. The absorption peak at 3015.

View Article and Find Full Text PDF