Publications by authors named "Beest M"

Tetraspanins are four-transmembrane proteins that play fundamental roles in the immune system by enabling processes like migration, proliferation, signaling and protein trafficking. While the importance of cell surface tetraspanins has been established, the function of intracellular tetraspanins is less well understood. Here, we investigated the role of tetraspanin 3 (Tspan3) in lymphocytes.

View Article and Find Full Text PDF

Tetraspanin proteins play an important role in many cellular processes as they are key organizers of different receptors on the plasma membrane. Most tetraspanins are highly glycosylated at their large extracellular loop; however, little is known about the function of tetraspanin glycosylation in immune cells. In this study we investigated the effects of glycosylation of CD37 and CD53, two tetraspanins important for cellular and humoral immunity.

View Article and Find Full Text PDF

Intracellular vesicle transport is essential for cellular homeostasis and is partially mediated by SNARE proteins. Endosomal trafficking to the plasma membrane ensures cytokine secretion in dendritic cells (DCs) and the initiation of immune responses. Despite its critical importance, the specific molecular components that regulate DC cytokine secretion are poorly characterised.

View Article and Find Full Text PDF

Endosomal Sorting Complex Required for Transport (ESCRT) proteins can be transiently recruited to the plasma membrane for membrane repair and formation of extracellular vesicles. Here, we discovered micrometer-sized worm-shaped ESCRT structures that stably persist for multiple hours at the plasma membrane of macrophages, dendritic cells, and fibroblasts. These structures surround clusters of integrins and known cargoes of extracellular vesicles.

View Article and Find Full Text PDF

The importance of fatty acid (FA) metabolism in cancer is well-established, yet the mechanisms underlying metabolic reprogramming remain elusive. Here, we identify tetraspanin CD37, a prognostic marker for aggressive B-cell lymphoma, as essential membrane-localized inhibitor of FA metabolism. Deletion of CD37 on lymphoma cells results in increased FA oxidation shown by functional assays and metabolomics.

View Article and Find Full Text PDF

T cells depend on the phosphatase CD45 to initiate T cell receptor signaling. Although the critical role of CD45 in T cells is established, the mechanisms controlling function and localization in the membrane are not well understood. Moreover, the regulation of specific CD45 isoforms in T cell signaling remains unresolved.

View Article and Find Full Text PDF

The spread of respiratory diseases via aerosol particles in indoor settings is of significant concern. The SARS-CoV-2 virus has been found to spread widely in confined enclosures like hotels, hospitals, cruise ships, prisons, and churches. Particles exhaled from a person indoors can remain suspended long enough for increasing the opportunity for particles to spread spatially.

View Article and Find Full Text PDF

Background: While immune checkpoint inhibitors such as anti-PD-L1 antibodies have revolutionized cancer treatment, only subgroups of patients show durable responses. Insight in the relation between clinical response, PD-L1 expression and intratumoral localization of PD-L1 therapeutics could improve patient stratification. Therefore, we present the modular synthesis of multimodal antibody-based imaging tools for multiscale imaging of PD-L1 to study intratumoral distribution of PD-L1 therapeutics.

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma (DLBCL) represents the most common form of non-Hodgkin lymphoma (NHL) that is still incurable in a large fraction of patients. Tetraspanin CD37 is highly expressed on mature B lymphocytes, and multiple CD37-targeting therapies are under clinical development for NHL. However, CD37 expression is nondetectable in ∼50% of DLBCL patients, which correlates with inferior treatment outcome, but the underlying mechanisms for differential CD37 expression in DLBCL are still unknown.

View Article and Find Full Text PDF
Article Synopsis
  • In autophagy, LC3-positive autophagophores form a double-membrane structure around cellular debris, while in LC3-associated phagocytosis (LAP), lipidated LC3 (LC3-II) is created at the phagosomal membrane.
  • The study investigated how different autophagy inhibitors affect LAP, revealing that SAR405 decreased LC3-II and inhibited LAP, while bafilomycin A1 also inhibited LAP but increased LC3-II levels, and chloroquine raised LC3-II without affecting LAP.
  • Inhibitors like EACC, which block autophagosome-lysosome fusion, led to LC3 degradation possibly via the proteasome, highlighting the significance
View Article and Find Full Text PDF

Many cellular processes are dependent on correct pH levels, and this is especially important for the secretory pathway. Defects in pH homeostasis in distinct organelles cause a wide range of diseases, including disorders of glycosylation and lysosomal storage diseases. Ratiometric imaging of the pH-sensitive mutant of green fluorescent protein, pHLuorin, has allowed for targeted pH measurements in various organelles, but the required sequential image acquisition is intrinsically slow and therefore the temporal resolution is unsuitable to follow the rapid transit of cargo between organelles.

View Article and Find Full Text PDF

The SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein syntaxin-5 (Stx5) is essential for Golgi transport. In humans, the STX5 mRNA encodes two protein isoforms, Stx5 Long (Stx5L) from the first starting methionine and Stx5 Short (Stx5S) from an alternative starting methionine at position 55. In this study, we identify a human disorder caused by a single missense substitution in the second starting methionine (p.

View Article and Find Full Text PDF

Aim: A "leaky" gut barrier has been implicated in the initiation and progression of a multitude of diseases, for example, inflammatory bowel disease (IBD), irritable bowel syndrome and celiac disease. Here we show how pro-hormone Chromogranin A (CgA), produced by the enteroendocrine cells, and Catestatin (CST: hCgA ), the most abundant CgA-derived proteolytic peptide, affect the gut barrier.

Methods: Colon tissues from region-specific CST-knockout (CST-KO) mice, CgA-knockout (CgA-KO) and WT mice were analysed by immunohistochemistry, western blot, ultrastructural and flowcytometry studies.

View Article and Find Full Text PDF

Glycosylation is an important post-translational modification for both intracellular and secreted proteins. For glycosylation to occur, cargo must be transported after synthesis through the different compartments of the Golgi apparatus where distinct monosaccharides are sequentially bound and trimmed, resulting in increasingly complex branched glycan structures. Of utmost importance for this process is the intraorganellar environment of the Golgi.

View Article and Find Full Text PDF

Immune-cell activation by inflammatory stimuli triggers the transcription and translation of large amounts of cytokines. The transport of newly synthesized cytokines to the plasma membrane by vesicular trafficking can be rate-limiting for the production of these cytokines, and immune cells upregulate their exocytic machinery concomitantly with increased cytokine expression in order to cope with the increasing demand for trafficking. Whereas it is logical that trafficking is rate-limiting for regulated secretion where an intracellular pool of molecules is waiting to be released, the reason for this is not obvious for constitutively secreted cytokines, such as interleukin-6 (IL-6), interleukin-12 (IL-12) and tumor necrosis factor-α (TNF-α).

View Article and Find Full Text PDF

Cells are exposed to reactive oxygen species (ROS) as a by-product of mitochondrial metabolism, especially under hypoxia. ROS are also enzymatically generated at the plasma membrane during inflammation. Radicals cause cellular damage leading to cell death, as they react indiscriminately with surrounding lipids, proteins, and nucleotides.

View Article and Find Full Text PDF

The soluble -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) syntaxin 5 (Stx5) in mammals and its ortholog Sed5p in mediate anterograde and retrograde endoplasmic reticulum (ER)-Golgi trafficking. Stx5 and Sed5p are structurally highly conserved and are both regulated by interactions with other ER-Golgi SNARE proteins, the Sec1/Munc18-like protein Scfd1/Sly1p and the membrane tethering complexes COG, p115, and GM130. Despite these similarities, yeast Sed5p and mammalian Stx5 are differently recruited to COPII-coated vesicles, and Stx5 interacts with the microtubular cytoskeleton, whereas Sed5p does not.

View Article and Find Full Text PDF

Antigen presentation to T cells in major histocompatibility complex class II (MHC class II) requires the conversion of early endo/phagosomes into lysosomes by a process called maturation. Maturation is driven by the phosphoinositide kinase PIKfyve. Blocking PIKfyve activity by small molecule inhibitors caused a delay in the conversion of phagosomes into lysosomes and in phagosomal acidification, whereas production of reactive oxygen species (ROS) increased.

View Article and Find Full Text PDF

Dendritic cells (DCs) constantly sample peripheral tissues for antigens, which are subsequently ingested to derive peptides for presentation to T cells in lymph nodes. To do so, DCs have to traverse many different tissues with varying oxygen tensions. Additionally, DCs are often exposed to low oxygen tensions in tumors, where vascularization is lacking, as well as in inflammatory foci, where oxygen is rapidly consumed by inflammatory cells during the respiratory burst.

View Article and Find Full Text PDF

The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations.

View Article and Find Full Text PDF

Cells producing cytokines often express the receptor for the same cytokine, which makes them prone to autocrine signaling. How cytokine release and signaling are regulated in the same cell is not understood. In this study, we demonstrate that signaling by exogenous and self-synthesized inflammatory cytokine interleukin-6 (IL-6) within endosomal compartments acts as a cellular brake that limits the synthesis of IL-6.

View Article and Find Full Text PDF

The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein family is of vital importance for organelle communication. The complexing of cognate SNARE members present in both the donor and target organellar membranes drives the membrane fusion required for intracellular transport. In the endocytic route, SNARE proteins mediate trafficking between endosomes and phagosomes with other endosomes, lysosomes, the Golgi apparatus, the plasma membrane, and the endoplasmic reticulum.

View Article and Find Full Text PDF

Immune cells communicate by releasing large quantities of cytokines. Although the mechanisms of cytokine secretion are increasingly understood, quantitative knowledge of the number of cytokines per vesicle is still lacking. Here, we measured with quantitative microscopy the release rate of vesicles potentially carrying interleukin-6 (IL-6) in human dendritic cells.

View Article and Find Full Text PDF

The activation of tumor-specific effector immune cells is key for successful immunotherapy and vaccination is a powerful strategy to induce such adaptive immune responses. However, the generation of effective anticancer vaccines is challenging. To overcome these challenges, a novel straight-forward strategy of adjuvant-induced tumor antigen assembly to generate nanovaccines with superior antigen/adjuvant loading efficiency is developed.

View Article and Find Full Text PDF