Publications by authors named "Beerli C"

Leukotriene A4 hydrolase (LTA4H) is the final and rate-limiting enzyme in the biosynthesis of pro-inflammatory leukotriene B4 (LTB). Preclinical studies have provided strong evidence that LTA4H is an attractive drug target for the treatment of chronic inflammatory diseases. Here, we describe the transformation of compound , a fragment-like hit, into the potent inhibitor of LTA4H .

View Article and Find Full Text PDF

The discovery of chiral amino alcohols derived from our previously disclosed clinical LTA4H inhibitor is described. In a biochemical assay, their optical antipodes showed similar potencies, which could be rationalized by the cocrystal structures of these compounds bound to LTA4H. Despite comparable stabilities in liver microsomes, they showed distinct in vivo PK properties.

View Article and Find Full Text PDF

We describe the discovery and characterization of the supersoft topical JAK inhibitor , which is potent in biochemical and cellular assays as well as in human skin models. In blood, the neutral ester is rapidly hydrolyzed ( ∼ 6 min) to the corresponding charged carboxylic acid exhibiting >30-fold reduced permeability. Consequently, acid does not reach the intracellular JAK kinases and is inactive in cellular assays and in blood.

View Article and Find Full Text PDF

We present a novel concept for the design of supersoft topical drugs. Enzymatic cleavage of the carbonate ester of the potent pan Janus kinase (JAK) inhibitor releases hydroxypyridine . Due to hydroxypyridine-pyridone tautomerism, undergoes a rapid conformational change preventing the compound to assume the bioactive conformation required for binding to JAK kinases.

View Article and Find Full Text PDF

Introduction: Siponimod, a potent and selective sphingosine-1-phosphate (S1P) agonist, is the only therapeutic agent that has shown efficacy against disability progression, decline in cognitive processing speed, total brain volume loss, gray matter atrophy and signs of demyelination in patients with secondary progressive multiple sclerosis (SPMS). Although the pathophysiology of progression in SPMS and primary progressive MS (PPMS) is thought to be similar, fingolimod, the prototype S1P agonist, failed to show efficacy against disability progression in PPMS. Differentiating siponimod from fingolimod at the level of their central effects is believed to be the key to a better understanding of the underlying characteristics that could make siponimod uniquely efficacious in progressive MS (PMS).

View Article and Find Full Text PDF
Article Synopsis
  • Siponimod is an oral medication approved for treating multiple sclerosis, showing promise in promoting remyelination and reducing inflammation in various mouse models of demyelination.
  • In experiments, siponimod treatment led to improved remyelination in the cuprizone model and better visual function in the EAEON model, following a bell-shaped dose-response curve where moderate doses were more effective than high ones.
  • The study highlights siponimod's immunomodulatory properties and its potential to shift microglial differentiation towards supporting myelin repair, suggesting that optimal dosing is crucial for maximizing its therapeutic effects.
View Article and Find Full Text PDF

Background: Siponimod (BAF312), a selective S1P/S1P agonist, reduces disability progression in secondary progressive MS. Recent observations suggest it could act via S1P/S1P-dependent anti-inflammatory and pro-myelination effects on CNS-resident cells.

Objective: Generate preclinical evidence confirming siponimod's CNS penetration and activity.

View Article and Find Full Text PDF

The cytosolic metalloenzyme leukotriene A hydrolase (LTA4H) is the final and rate-limiting enzyme in the biosynthesis of pro-inflammatory leukotriene B (LTB). Preclinical studies have validated this enzyme as an attractive drug target in chronic inflammatory diseases. Despite several attempts, no LTA4H inhibitor has reached the market, yet.

View Article and Find Full Text PDF

Genetic disruption or short-term pharmacological inhibition of MALT1 protease is effective in several preclinical models of autoimmunity and B cell malignancies. Despite these protective effects, the severe reduction in regulatory T cells (Tregs) and the associated IPEX-like pathology occurring upon congenital disruption of the MALT1 protease in mice has raised concerns about the long-term safety of MALT1 inhibition. Here we describe the results of a series of toxicology studies in rat and dog species using MLT-943, a novel potent and selective MALT1 protease inhibitor.

View Article and Find Full Text PDF

Bruton's tyrosine kinase (BTK), a cytoplasmic tyrosine kinase, plays a central role in immunity and is considered an attractive target for treating autoimmune diseases. The use of currently marketed covalent BTK inhibitors is limited to oncology indications based on their suboptimal kinase selectivity. We describe the discovery and preclinical profile of LOU064 (remibrutinib, ), a potent, highly selective covalent BTK inhibitor.

View Article and Find Full Text PDF

Objective: Fcγ receptors (FcγR) play important roles in both protective and pathogenic immune responses. The assembly of the CBM signalosome encompassing caspase recruitment domain-containing protein 9, B cell CLL/lymphoma 10, and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT-1) is required for optimal FcγR-induced canonical NF-κB activation and proinflammatory cytokine release. This study was undertaken to clarify the relevance of MALT-1 protease activity in FcγR-driven events and evaluate the therapeutic potential of selective MALT-1 protease inhibitors in FcγR-mediated diseases.

View Article and Find Full Text PDF

Retinoic acid receptor-related orphan receptor gamma-t (RORγt) is considered to be the master transcription factor for the development of Th17 cells that produce proinflammatory cytokines such as IL-17A. Overproportionate Th17 cell abundance is associated with the pathogenesis of many inflammatory conditions including psoriasis. In a high-throughput fluorescence resonance energy transfer (FRET) screen, we identified compound 1 as a hit with promising lipophilic efficiency (LipE).

View Article and Find Full Text PDF

To achieve efficient binding and subsequent fusion, most enveloped viruses encode between one and five proteins. For many viruses, the clustering of fusion proteins-and their distribution on virus particles-is crucial for fusion activity. Poxviruses, the most complex mammalian viruses, dedicate 15 proteins to binding and membrane fusion.

View Article and Find Full Text PDF

Cell motility is essential for viral dissemination. Vaccinia virus (VACV), a close relative of smallpox virus, is thought to exploit cell motility as a means to enhance the spread of infection. A single viral protein, F11L, contributes to this by blocking RhoA signalling to facilitate cell retraction.

View Article and Find Full Text PDF

To orchestrate context-dependent signalling programmes, poxviruses encode two dual-specificity enzymes, the F10 kinase and the H1 phosphatase. These signalling mediators are essential for poxvirus production, yet their substrate profiles and systems-level functions remain enigmatic. Using a phosphoproteomic screen of cells infected with wild-type, F10 and H1 mutant vaccinia viruses, we systematically defined the viral signalling network controlled by these enzymes.

View Article and Find Full Text PDF

The regulation of size, volume and mass in living cells is physiologically important, and dysregulation of these parameters gives rise to many diseases. Cell mass is largely determined by the amount of water, proteins, lipids, carbohydrates and nucleic acids present in a cell, and is tightly linked to metabolism, proliferation and gene expression. Technologies have emerged in recent years that make it possible to track the masses of single suspended cells and adherent cells.

View Article and Find Full Text PDF

Rational: Homeostasis of vascular barriers depends upon sphingosine 1-phosphate (S1P) signaling via the S1P1 receptor. Accordingly, S1P1 competitive antagonism is known to reduce vascular barrier integrity with still unclear pathophysiological consequences. This was explored in the present study using NIBR-0213, a potent and selective S1P1 competitive antagonist.

View Article and Find Full Text PDF

Background: Increased pulmonary ceramide levels are suggested to play a causative role in lung diseases including COPD. Neutral sphingomyelinase-2 (nSMase-2) and acid SMase (aSMase), which hydrolyze sphingomyelin to produce ceramide, are activated by a range of cellular stresses, including inflammatory cytokines and pathogens, but notably cigarette smoke appears to only activate nSMase-2. Our primary objective was to investigate nSMase-2 and aSMase protein localization and quantification in lung tissue from nonsmokers (NS), smokers (S), and COPD patients.

View Article and Find Full Text PDF

The nanoscale molecular assembly of mammalian viruses during their infectious life cycle remains poorly understood. Their small dimensions, generally bellow the 300nm diffraction limit of light microscopes, has limited most imaging studies to electron microscopy. The recent development of super-resolution (SR) light microscopy now allows the visualisation of viral structures at resolutions of tens of nanometers.

View Article and Find Full Text PDF

Rationale: Platelets are known to play a crucial role in hemostasis. Sphingosine kinases (Sphk) 1 and 2 catalyze the conversion of sphingosine to the bioactive metabolite sphingosine 1-phosphate (S1P). Although platelets are able to secrete S1P on activation, little is known about a potential intrinsic effect of S1P on platelet function.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) lyase is considered as a drug target in autoimmune diseases based on the protective effect of reducing activity of the enzyme in animal models of inflammation. Since S1P lyase deficiency in mice causes a severe, lethal phenotype, it was of interest to investigate any pathological alterations associated with only partially reduced activity of S1P lyase as may be encountered upon pharmacological inhibition. Both genetic reduction of S1P lyase activity in mice and inhibition of S1P lyase with a low-molecular-weight compound in rats consistently resulted in podocyte-based kidney toxicity, which is the most severe finding.

View Article and Find Full Text PDF

Sphingosine 1-phosphate (S1P) lyase has recently been implicated as a therapeutic target for the treatment of multiple sclerosis (MS), based on studies in a genetic mouse model. Potent active site directed inhibitors of the enzyme are not known so far. Here we describe the discovery of (4-benzylphthalazin-1-yl)-2-methylpiperazin-1-yl]nicotinonitrile 5 in a high-throughput screen using a biochemical assay, and its further optimization.

View Article and Find Full Text PDF

The sustained and localized delivery of monoclonal antibodies has become highly relevant, because of the increasing number of investigated local delivery applications in recent years. As the local delivery of antibodies is associated with high technological hurdles, very few successful approaches have been reported in the literature so far. Alginate-based delivery systems were previously described as promising sustained release formulations for monoclonal antibodies (mAbs).

View Article and Find Full Text PDF

Background: Sphingosine-1-phosphate (S1P) regulates the egress of T cells from lymphoid organs; levels of S1P in the tissues are controlled by S1P lyase (Sgpl1). Hence, Sgpl1 offers a target to block T cell-dependent inflammatory processes. However, the involvement of Sgpl1 in models of disease has not been fully elucidated yet, since Sgpl1 KO mice have a short life-span.

View Article and Find Full Text PDF

Inhibitors of the sphingosine-1-phosphate (S1P) degrading enzyme S1P lyase (SPL) may be useful in the therapy of inflammatory diseases by preventing lymphocyte recruitment to diseased tissues. Here we describe a cellular assay for such inhibitors, which takes advantage of the observation that a fraction of the intracellular S1P accumulated in the presence of SPL inhibitors is secreted into the medium of cultured cells. The secreted S1P is then quantified using an S1P-sensitive reporter cell line.

View Article and Find Full Text PDF