Publications by authors named "Beebie Boo"

Occupational exposure to toxic chemicals increases the risk of developing localized provoked vulvodynia-a prevalent, yet poorly understood, chronic condition characterized by sensitivity to touch and pressure, and accumulation of mast cells in painful tissues. Here, we topically sensitized female ND4 Swiss mice to the common household and industrial preservative methylisothiazolinone (MI) and subsequently challenged them daily with MI or acetone and olive oil vehicle on the labiar skin. MI-challenged mice developed significant, persistent tactile sensitivity and long-lasting local accumulation of mast cells alongside early, transient increases in CD4+ and CD8+ T cells, eosinophils, neutrophils, and increases in pro-inflammatory cytokines.

View Article and Find Full Text PDF

A history of allergies doubles the risk of vulvodynia-a chronic pain condition of unknown etiology often accompanied by increases in numbers of vulvar mast cells. We previously established the biological plausibility of this relationship in mouse models where repeated exposures to the allergens oxazolone or dinitrofluorobenzene on the labiar skin or inside the vaginal canal of ND4 Swiss Webster outbred mice led to persistent tactile sensitivity and local increases in mast cells. In these models, depletion of mast cells alleviated pain.

View Article and Find Full Text PDF

Vulvodynia is a remarkably prevalent chronic pain condition of unknown etiology. An increase in numbers of vulvar mast cells often accompanies a clinical diagnosis of vulvodynia and a history of allergies amplifies the risk of developing this condition. We previously showed that repeated exposures to oxazolone dissolved in ethanol on the labiar skin of mice led to persistent genital sensitivity to pressure and a sustained increase in labiar mast cells.

View Article and Find Full Text PDF

Background: Vulvodynia is a remarkably prevalent chronic pain condition of unknown etiology. Epidemiologic studies associate the risk of vulvodynia with a history of atopic disease. We used an established model of hapten-driven contact hypersensitivity to investigate the underlying mechanisms of allergy-provoked prolonged sensitivity to pressure.

View Article and Find Full Text PDF