Publications by authors named "Bee Luan Khoo"

Piezoelectric biomaterials hold a pivotal role in the progression of bioelectronics and biomedicine, owing to their remarkable electromechanical properties, biocompatibility, and bioresorbability. However, their technological potential is restrained by certain challenges, including precise manipulation of nanobiomolecules, controlling their growth across nano-to-macro hierarchy, and tuning desirable mechanical properties. We report a high-speed thermal-electric driven aerosol (TEA) printing method capable of fabricating piezoelectric biofilms in a singular step.

View Article and Find Full Text PDF

Introduction: Host-microbe interactions are important to human health and ecosystems globally, so elucidating the complex host-microbe interactions and associated protein expressions drives the need to develop sensitive and accurate biochemical techniques. Current proteomics techniques reveal information from the point of view of either the host or microbe, but do not provide data on the corresponding partner. Moreover, it remains challenging to simultaneously study host-microbe proteomes that reflect the direct competition between host and microbe.

View Article and Find Full Text PDF

Interactions between tumoral cells and tumor-associated bacteria within the tumor microenvironment play a significant role in tumor survival and progression, potentially impacting cancer treatment outcomes. In lung cancer patients, the Gram-negative pathogen Pseudomonas aeruginosa raises questions about its role in tumor survival. Here, a microfluidic-based 3D-human lung tumor spheroid-P.

View Article and Find Full Text PDF

Wearable electronics with great breathability enable a comfortable wearing experience and facilitate continuous biosignal monitoring over extended periods. However, current research on permeable electronics is predominantly at the stage of electrode and substrate development, which is far behind practical applications with comprehensive integration with diverse electronic components (for example, circuitry, electronics, encapsulation). Achieving permeability and multifunctionality in a singular, integrated wearable electronic system remains a formidable challenge.

View Article and Find Full Text PDF

This study introduces AIEgen-Deep, an innovative classification program combining AIEgen fluorescent dyes, deep learning algorithms, and the Segment Anything Model (SAM) for accurate cancer cell identification. Our approach significantly reduces manual annotation efforts by 80%-90%. AIEgen-Deep demonstrates remarkable accuracy in recognizing cancer cell morphology, achieving a 75.

View Article and Find Full Text PDF

is a notorious opportunistic pathogen associated with chronic biofilm-related infections, posing a significant challenge to effective treatment strategies. Quorum sensing (QS) and biofilm formation are critical virulence factors employed by , contributing to its pathogenicity and antibiotic resistance. Other than the homoserine-based QS systems, also possesses the quinolone-based Pseudomonas quinolone signal (PQS) QS signaling.

View Article and Find Full Text PDF

Cancer spatial and temporal heterogeneity fuels resistance to therapies. To realize the routine assessment of cancer prognosis and treatment, we demonstrate the development of an Intelligent Disease Detection Tool (IDDT), a microfluidic-based tumor model integrated with deep learning-assisted algorithmic analysis. IDDT was clinically validated with liquid blood biopsy samples (n = 71) from patients with various types of cancers (e.

View Article and Find Full Text PDF

Cellular deformability is a promising biomarker for evaluating the physiological state of cells in medical applications. Microfluidics has emerged as a powerful technique for measuring cellular deformability. However, existing microfluidic-based assays for measuring cellular deformability rely heavily on image analysis, which can limit their scalability for high-throughput applications.

View Article and Find Full Text PDF

Background: Microbes have been implicated in atherosclerosis development and progression, but the impact of bacterial-based biofilms on fibrous plaque rupture remains poorly understood.

Results: Here, we developed a comprehensive atherosclerotic model to reflect the progression of fibrous plaque under biofilm-induced inflammation (FP-I). High expressions of biofilm-specific biomarkers algD, pelA and pslB validated the presence of biofilms.

View Article and Find Full Text PDF

Microbial communities that form surface-attached biofilms must release and disperse their constituent cells into the environment to colonize fresh sites for continued survival of their species. For pathogens, biofilm dispersal is crucial for microbial transmission from environmental reservoirs to hosts, cross-host transmission, and dissemination of infections across tissues within the host. However, research on biofilm dispersal and its consequences in colonization of fresh sites remain poorly understood.

View Article and Find Full Text PDF

Most electronics such as sensors, actuators and energy harvesters need piezoceramic films to interconvert mechanical and electrical energy. Transferring the ceramic films from their growth substrates for assembling electronic devices commonly requires chemical or physical etching, which comes at the sacrifice of the substrate materials, film cracks, and environmental contamination. Here, we introduce a van der Waals stripping method to fabricate large-area and freestanding piezoceramic thin films in a simple, green, and cost-effective manner.

View Article and Find Full Text PDF

Decades of efforts in engineering in vitro cancer models have advanced drug discovery and the insight into cancer biology. However, the establishment of preclinical models that enable fully recapitulating the tumor microenvironment remains challenging owing to its intrinsic complexity. Recent progress in engineering techniques has allowed the development of a new generation of in vitro preclinical models that can recreate complex in vivo tumor microenvironments and accurately predict drug responses, including spheroids, organoids, and tumor-on-a-chip.

View Article and Find Full Text PDF

Background: A central issue hindering the development of effective anti-fibrosis drugs for heart failure is the unclear interrelationship between fibrosis and the immune cells. This study aims at providing precise subtyping of heart failure based on immune cell fractions, elaborating their differences in fibrotic mechanisms, and proposing a biomarker panel for evaluating intrinsic features of patients' physiological statuses through subtype classification, thereby promoting the precision medicine for cardiac fibrosis.

Methods: We inferred immune cell type abundance of the ventricular samples by a computational method (CIBERSORTx) based on ventricular tissue samples from 103 patients with heart failure, and applied K-means clustering to divide patients into two subtypes based on their immune cell type abundance.

View Article and Find Full Text PDF

Introduction: Antibiotic-resistant bacterial infections, such as Pseudomonas aeruginosa and Staphylococcus aureus, are prevalent in lung cancer patients, resulting in poor clinical outcomes and high mortality. Etoposide (ETO) is an FDA-approved chemotherapy drug that kills cancer cells by damaging DNA through oxidative stress. However, it is unclear if ETO can cause unintentional side effects on tumor-associated microbial pathogens, such as inducing antibiotic resistance.

View Article and Find Full Text PDF

Components of the tumor microenvironment (TME), such as tumor-associated macrophages (TAMs), influence tumor progression. The specific polarization and phenotypic transition of TAMs in the tumor microenvironment lead to two-pronged impacts that can promote or hinder cancer development and treatment. Here, a novel microfluidic multi-faceted bladder tumor model (TAM ) is developed incorporating TAMs and cancer cells to evaluate the impact of bacterial distribution on immunomodulation within the tumor microenvironment in vivo.

View Article and Find Full Text PDF

The identification of tumor-related microRNAs (miRNAs) exhibits excellent promise for the early diagnosis of cancer and other bioanalytical applications. Therefore, we developed a sensitive and efficient biosensor using polyadenine (polyA)-mediated fluorescent spherical nucleic acid (FSNA) for miRNA analysis based on strand displacement reactions on gold nanoparticle (AuNP) surfaces and electrokinetic signal amplification (ESA) on a microfluidic chip. In this FSNA, polyA-DNA biosensor was anchored on AuNP surfaces via intrinsic affinity between adenine and Au.

View Article and Find Full Text PDF

The drug-induced diverse response among patients is a severe problem for improving hemorheological character. However, there is no validated method for personalized therapy to the best of our knowledge. Here, we apply a gravity-driven deformability cytometry platform (GD-DCP) to profile the drug response of the red cell deformability (RCD) at the single-cell level using pentoxifylline (PTX) as a model drug, the effect of different concentrations of PTX (0, 2, 20, 200 μg mL, the clinical dosage of PTX is 20 μg mL) on RCD in patients with cardiovascular disease was explored.

View Article and Find Full Text PDF

Liquid biopsy is an alternative to invasive bone marrow biopsy for leukemia detection and management. However, no robust technology is available for enriching leukemic blast cells from the blood. Here, we present a simple and effective protocol for vigorous enrichment of blast cells from whole blood using a one-step microfluidic blast cell biochip (BCB) that exploits distinct cell mechanical properties between diseased and healthy leukocytes.

View Article and Find Full Text PDF

Inadequate access to clean water is detrimental to human health and aquatic industries. Waterborne pathogens can survive prolonged periods in aquatic bodies, infect commercially important seafood, and resist water disinfection, resulting in human infections. Environmental agencies and research laboratories require a relevant, portable, and cost-effective platform to monitor microbial pathogens and assess their risk of infection on a large scale.

View Article and Find Full Text PDF

Cancer cells undergo phenotypic changes or mutations during treatment, making detecting protein-based or gene-based biomarkers challenging. Here, we used algorithmic analysis combined with patient-derived tumor models to derive an early prediction tool using patient-derived cell clusters from liquid biopsy (LIQBP) for cancer prognosis in a label-free manner. The LIQBP platform incorporated a customized microfluidic biochip that mimicked the tumor microenvironment to establish patient clusters, and extracted physical parameters from images of each sample, including size, thickness, roughness, and thickness per area ( = 31).

View Article and Find Full Text PDF

Phagocytic cells recognize and phagocytose invading microbes for destruction. However, bacterial pathogens can remain hidden at low levels from conventional detection or replicate intracellularly after being phagocytosed by immune cells. Current phagocytosis-detection approaches involve flow cytometry or microscopic search for rare bacteria-internalized phagocytes among large populations of uninfected cells, which poses significant challenges in research and clinical settings.

View Article and Find Full Text PDF

Components within the tumor microenvironment, such as intratumoral bacteria (IB; within tumors), affect tumor progression. However, current experimental models have not explored the effects of extratumoral bacteria (EB; outside tumors) on cancer progression. Here, we developed a microfluidic platform to analyze the influence of bacterial distribution on bladder cancer progression under defined conditions, using uropathogenic Escherichia coli.

View Article and Find Full Text PDF

Metastasis is a complex process that affects patient treatment and survival. To routinely monitor cancer plasticity and guide treatment strategies, it is highly desired to provide information about metastatic status in real-time. Here, we proposed a worm-based (WB) microfluidic biosensor to rapidly monitor biochemical cues related to metastasis in a well-defined environment.

View Article and Find Full Text PDF