Publications by authors named "Bedrosian P"

Yellowstone Caldera is one of the largest volcanic systems on Earth, hosting three major caldera-forming eruptions in the past two million years, interspersed with periods of less explosive, smaller-volume eruptions. Caldera-forming eruptions at Yellowstone are sourced by rhyolitic melts stored within the mid- to upper crust. Seismic tomography studies have suggested that a broad region of rhyolitic melt extends beneath Yellowstone Caldera, with an estimated melt volume that is one to four times greater than the eruptive volume of the largest past caldera-forming eruption, and an estimated melt fraction of 6-28 per cent.

View Article and Find Full Text PDF

Erebus volcano, Antarctica, with its persistent phonolite lava lake, is a classic example of an evolved, CO-rich rift volcano. Seismic studies provide limited images of the magmatic system. Here we show using magnetotelluric data that a steep, melt-related conduit of low electrical resistivity originating in the upper mantle undergoes pronounced lateral re-orientation in the deep crust before reaching shallower magmatic storage and the summit lava lake.

View Article and Find Full Text PDF

The clean energy transition will require a vast increase in metal supply, yet new mineral deposit discoveries are declining, due in part to challenges associated with exploring under sedimentary and volcanic cover. Recently, several case studies have demonstrated links between lithospheric electrical conductors imaged using magnetotelluric (MT) data and mineral deposits, notably Iron Oxide Copper Gold (IOCG). Adoption of MT methods for exploration is therefore growing but the general applicability and relationship with many other deposit types remains untested.

View Article and Find Full Text PDF
Article Synopsis
  • Yellowstone National Park's thermal features are connected to a complex plumbing system of deep fluids, which remains largely unexplained.
  • The study uses airborne geophysical data to identify pathways in the hydrothermal system and reveals that thermal fluids can be distinguished by their electrical resistivity signatures.
  • Most thermal features are situated above high-flux conduits along buried faults, and the mixing of groundwater with thermal fluids creates the unique geochemical signatures observed in the park.
View Article and Find Full Text PDF

The seismicity pattern along the San Andreas fault near Parkfield and Cholame, California, varies distinctly over a length of only fifty kilometres. Within the brittle crust, the presence of frictionally weak minerals, fault-weakening high fluid pressures and chemical weakening are considered possible causes of an anomalously weak fault northwest of Parkfield. Non-volcanic tremor from lower-crustal and upper-mantle depths is most pronounced about thirty kilometres southeast of Parkfield and is thought to be associated with high pore-fluid pressures at depth.

View Article and Find Full Text PDF

The Cenozoic collision between the Indian and Asian continents formed the Tibetan plateau, beginning about 70 million years ago. Since this time, at least 1,400 km of convergence has been accommodated by a combination of underthrusting of Indian and Asian lithosphere, crustal shortening, horizontal extrusion and lithospheric delamination. Rocks exposed in the Himalaya show evidence of crustal melting and are thought to have been exhumed by rapid erosion and climatically forced crustal flow.

View Article and Find Full Text PDF

Magnetotelluric exploration has shown that the middle and lower crust is anomalously conductive across most of the north-to-south width of the Tibetan plateau. The integrated conductivity (conductance) of the Tibetan crust ranges from 3000 to greater than 20,000 siemens. In contrast, stable continental regions typically exhibit conductances from 20 to 1000 siemens, averaging 100 siemens.

View Article and Find Full Text PDF