A dual-output thin-disk picosecond laser operating at 100 W with 1 kHz repetition rate is reported in this Letter. By electronically adjusting the amplitude of the optical seed pulses that are injected into the laser cavity, the energy extracted from the gain medium can be shared between two pulses. Amplified double pulses are subsequently spatially separated into two independent beams by a fast Pockels cell, compressed in one common compressor, and frequency-doubled with ∼70% efficiency.
View Article and Find Full Text PDFThe latest advances in petawatt laser technology within the ELI Beamlines project have stimulated the development of large surface area dielectrically coated mirrors meeting all demanding requirements for guiding the compressed 30 J, 25 fs HAPLS laser beam at 10 Hz repetition rate and a center wavelength of 810 nm entirely in vacuum. We describe the production and evaluation of TaO/HfO/SiO ion beam sputtered coated (440 × 290 × 75) mm beam transport mirrors. No crazing was observed after thirty vacuum-air cycles.
View Article and Find Full Text PDFWe report on a 1 kHz, 515 nm laser system, based on a commercially available 230 W average power Yb:YAG thin-disk regenerative amplifier, developed for pumping one of the last optical parametric chirped pulse amplification (OPCPA) stages of the Allegra laser system at ELI Beamlines. To avoid problems with self-focusing of picosecond pulses, the 1030 nm output pulses are compressed and frequency doubled with an LBO crystal in vacuum. Additionally, development of a thermal management system was needed to ensure stable phase matching conditions at high average power.
View Article and Find Full Text PDFWe present a study of the temporal prepulse contrast degradation of high focused intensity pulses produced in CPA laser systems due to imperfections in amplifier design, alignment of amplifier components, and crystal inhomogeneity. Using an extended cross-polarized imaging technique, we demonstrate the presence of multiple crystal domains inside Ti:sapphire slabs with ≈10 diameter. The results of our numerical calculations show that crystalline c-axis orientation inhomogeneity caused by these crystal domains can lead to the generation of prepulses with a relative contrast of >10 within several picoseconds before the main pulse.
View Article and Find Full Text PDFVacuum chambers are frequently used in high-energy, high-peak-power laser systems to prevent deleterious nonlinear effects, which can result from propagation in air. In the vacuum sections of the Allegra laser system at ELI-Beamlines, we observed degradation of several optical elements due to laser-induced contamination (LIC). This contamination is present on surfaces with laser intensity above 30/ with wavelengths of 515, 800, and 1030 nm.
View Article and Find Full Text PDFStable picosecond supercontinuum generated in long crystals is an excellent means of seeding broadband, high-energy CPA systems. The generated output energy and spectrum can be almost three times as stable as the pump for a wide range of input pulse parameters. In this work, we show this is an intrinsic property for crystals longer than the filament and for a range of input energy values.
View Article and Find Full Text PDFWe present a broadband optical parametric chirped pulse amplification (OPCPA) system delivering 4 J pulses at a repetition rate of 5 Hz. It will serve as a frontend for the 1.5 kJ, <150 fs, 10 PW laser beamline currently under development by a consortium of National Energetics and Ekspla.
View Article and Find Full Text PDFA robust and simple method is presented for ensuring constant energy and pointing of a high average power solid state laser on a target. In addition to providing long-term stability, this scheme also eliminates any drifts in energy or pointing resulting from the initial warm-up after a cold start. This is achieved using two separate feedback loops: one loop stabilizes the pointing of the beam external to the amplifier cavity and the other locks the cavity mode to have optimum overlap with the pump spot on the active medium.
View Article and Find Full Text PDFWe present a stable supercontinuum (SC) generated in a bulk YAG crystal, pumped by 3 ps chirped pulses at 1030 nm. The SC is generated in a loose focus geometry in a 13 cm long YAG crystal, allowing for stable and robust single-filament generation. The SC energy stability exceeds that of the pump laser by almost a factor of 3.
View Article and Find Full Text PDFWe report on the design and performance of a fiber-based, multi-channel laser amplifier seed pulse distribution system. The device is designed to condition and distribute low energy laser pulses from a mode-locked oscillator to multiple, highly synchronized, high energy amplifiers integrated into a laser beamline. Critical functions such as temporal pulse stretching well beyond 100 ps/nm, pulse picking, and fine control over the pulse delay up to 300 ps are all performed in fiber eliminating the need for bulky and expensive grating stretchers, Pockels cells, and delay lines.
View Article and Find Full Text PDFWe derived a formula for calculation of the spectral phase of ultrashort pulses propagating through aberrated stretchers. Our approach is based on Seidel aberration theory. The dependence of spectral phase dispersion terms and residual angular dispersion on the individual Seidel aberration coefficients is found.
View Article and Find Full Text PDFWe report on a broadband OPCPA system, pumped at 515 nm by frequency doubled Yb:YAG thin disk lasers. The system delivers 11.3 mJ pulses at a central wavelength of 800 nm with a spatial beam quality of M = 1.
View Article and Find Full Text PDFWe report on a frequency-doubled picosecond Yb:YAG thin disk regenerative amplifier, developed as a pump laser for a kilohertz repetition rate OPCPA. At a repetition rate of 1 kHz, the compressed output of the regenerative amplifier has a pulse duration of 1.2 ps and pulse energy of 90 mJ with energy stability of σ < 0.
View Article and Find Full Text PDFA simple and compact scheme for synchronization of the pump and signal pulses for short-pulse OPCPA is demonstrated. Relative timing jitter of 17 fs RMS is achieved (1% of the pump pulse duration) and the system remains locked for hours. The scheme uses a balanced optical cross correlator to detect relative delays between the pump and signal pulses and can be operated with just 10's of μJ of pump energy and pJ-level signal energies.
View Article and Find Full Text PDF