Conifer somatic embryogenesis (SE) is a process driven by exogenously supplied plant growth regulators (PGRs). Exogenous PGRs and endogenous phytohormones trigger particular ontogenetic events. Complex mechanisms involving a number of endogenous phytohormones control the differentiation of cells and tissues, as well as the establishment of structures and organs.
View Article and Find Full Text PDFTargeting of the heat stress (HS, 40°C) to shoots, roots or whole plants substantially affects Arabidopsis physiological responses. Effective stress targeting was proved by determination of the expression of HS markers, HsfA2 and HSA32, which were quickly stimulated in the targeted organ(s), but remained low in non-stressed tissues for at least 2h. When shoots or whole plants were subjected to HS, a transient decrease in abscisic acid, accompanied by a small increase in active cytokinin levels, was observed in leaves, consistent with stimulation of transpiration, the main cooling mechanism in leaves.
View Article and Find Full Text PDFMaritime pine somatic embryos (SEs) require a reduction in water availability (high gellan gum concentration in the maturation medium) to reach the cotyledonary stage. This key switch, reported specifically for pine species, is not yet well understood. To facilitate the use of somatic embryogenesis for mass propagation of conifers, we need a better understanding of embryo development.
View Article and Find Full Text PDFThe plant hormones cytokinins (CKs) regulate multiple developmental and physiological processes in Arabidopsis (Arabidopsis thaliana). Responses to CKs vary in different organs and tissues (e.g.
View Article and Find Full Text PDFHormonal changes accompanying the cold stress (4°C) response that are related to the level of frost tolerance (FT; measured as LT50) and the content of the most abundant dehydrin, WCS120, were compared in the leaves and crowns of the winter wheat (Triticum aestivum L.) cv. Samanta and the spring wheat cv.
View Article and Find Full Text PDFCytokinins (CKs) are plant hormones affecting numerous developmental processes. Zeatin and its derivatives are the most important group of isoprenoid CKs. Zeatin occurs as two isomers: while trans-zeatin (transZ) was found to be a bioactive substance, cis-zeatin (cisZ) was reported to have a weak biological impact.
View Article and Find Full Text PDFThe phytohormone auxin is transported through the plant body either via vascular pathways or from cell to cell by specialized polar transport machinery. This machinery consists of a balanced system of passive diffusion combined with the activities of auxin influx and efflux carriers. Synthetic auxins that differ in the mechanisms of their transport across the plasma membrane together with polar auxin transport inhibitors have been used in many studies on particular auxin carriers and their role in plant development.
View Article and Find Full Text PDFDark-grown dicotyledonous seedlings form a hook-like structure at the top of the hypocotyl, which is controlled by the hormones auxin and ethylene. Hook formation is dependent on an auxin signal gradient, whereas hook exaggeration is part of the triple response provoked by ethylene in dark-grown Arabidopsis seedlings. Several other hormones and light are also known to be involved in hook development, but the molecular mechanisms that lead to the initial installation of an auxin gradient are still poorly understood.
View Article and Find Full Text PDFThe control of sugar beet (Beta vulgaris L.) germination by plant hormones was studied by comparing fruits and seeds. Treatment of sugar beet fruits and seeds with gibberellins, brassinosteroids, auxins, cytokinins, and jasmonates or corresponding hormone biosynthesis inhibitors did not appreciably affect radicle emergence of fruits or seeds.
View Article and Find Full Text PDF