Publications by authors named "Bedoya F"

The differential diagnosis of multiple sclerosis can present specific challenges in patients from Latin America, Africa, the Middle East, eastern Europe, southeast Asia, and the Western Pacific. In these areas, environmental factors, genetic background, and access to medical care can differ substantially from those in North America and western Europe, where multiple sclerosis is most common. Furthermore, multiple sclerosis diagnostic criteria have been developed primarily using data from North America and western Europe.

View Article and Find Full Text PDF

Background: Loxoscelism refers to a set of clinical manifestations caused by the bite of spiders from the genus. The classic clinical symptoms are characterized by an intense inflammatory reaction at the bite site followed by local necrosis and can be classified as cutaneous loxoscelism. This cutaneous form presents difficult healing, and the proposed treatments are not specific or effective.

View Article and Find Full Text PDF

Ammoniacal thiosulfate has been used lately as an alternative lixiviant for leaching gold from sulfides ores which are not amenable for cyanidation. However, the oxidation of the sulfide minerals generates products that inhibit the dissolution of gold and can promote the degradation of the leaching solution. The complexity of the ammoniacal thiosulfate leaching system has prevented the unification and clarification of the mechanisms of oxidation of sulfide ores used for gold extraction.

View Article and Find Full Text PDF

This study aimed to determine the seroprevalence and geographical distribution of spp., spp., and in dogs in Mexico, including owned dogs from veterinary clinics with regular medical care and shelter dogs.

View Article and Find Full Text PDF

The transcription factor, early growth response-1 (EGR-1), is involved in the regulation of cell differentiation, proliferation, and apoptosis in response to different stimuli. EGR-1 is described to be involved in pancreatic endoderm differentiation, but the regulatory mechanisms controlling its action are not fully elucidated. Our previous investigation reported that exposure of mouse embryonic stem cells (mESCs) to the chemical nitric oxide (NO) donor diethylenetriamine nitric oxide adduct (DETA-NO) induces the expression of early differentiation genes such as pancreatic and duodenal homeobox 1 ().

View Article and Find Full Text PDF

Nitric oxide (NO) is a gaseous biomolecule endogenously synthesized with an essential role in embryonic development and several physiological functions, such as regulating mitochondrial respiration and modulation of the immune response. The dual role of NO in embryonic stem cells (ESCs) has been previously reported, preserving pluripotency and cell survival or inducing differentiation with a dose-dependent pattern. In this line, high doses of NO have been used in vitro cultures to induce focused differentiation toward different cell lineages being a key molecule in the regenerative medicine field.

View Article and Find Full Text PDF

The optimization of conditions to promote the stemness of pluripotent cells in vitro is instrumental for their use in advanced therapies. We show here that exposure of human iPSCs and human ESCs to low concentrations of the chemical NO donor DETA/NO leads to stabilization of hypoxia-inducible factors (HIF-1α and HIF-2α) under normoxia, with this effect being dependent on diminished Pro 402 hydroxylation and decreased degradation by the proteasome. Moreover, the master genes of pluripotency, NANOG and OCT-4, were upregulated.

View Article and Find Full Text PDF
Article Synopsis
  • - Chronic lower limb ischemia is a serious complication for patients with type 2 diabetes, leading to high rates of non-traumatic amputations, and existing treatments like antiplatelet therapy and statins have not been very effective.
  • - This study aims to explore a new treatment method using mesenchymal stromal cells from adipose tissue to improve blood flow in patients who cannot undergo surgery for critical limb ischemia.
  • - The research will involve a randomized trial with 90 patients divided into three groups to assess the safety and effectiveness of cell therapy over one year, while also considering the impact on patients' quality of life.
View Article and Find Full Text PDF

Background: There is no data regarding COVID-19 in Multiple Sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) patients in Latin America.

Objective: The objective of this study was to describe the clinical characteristics and outcomes of patients included in RELACOEM, a LATAM registry of MS and NMOSD patients infected with COVID-19.

Methods: RELACOEM is a longitudinal, strictly observational registry of MS and NMOSD patients who suffer COVID-19 and Dengue in LATAM.

View Article and Find Full Text PDF

Snakebite envenoming is a global neglected disease with an incidence of up to 2.7 million new cases every year. Although antivenoms are so-far the most effective treatment to reverse the acute systemic effects induced by snakebite envenoming, they have a limited therapeutic potential, being unable to completely neutralize the local venom effects.

View Article and Find Full Text PDF

Background: Adoptive cell therapy with chimeric antigen receptor T cells (CAR-T) has become a standard treatment for patients with certain aggressive B cell malignancies and holds promise to improve the care of patients suffering from numerous other cancers in the future. However, the high manufacturing cost of CAR-T cell therapies poses a major barrier to their broader clinical application. Among the key cost drivers of CAR-T production are single-use reagents for T cell activation and clinical-grade viral vector.

View Article and Find Full Text PDF

Pluripotent stem cells maintain the property of self-renewal and differentiate into all cell types under clear environments. Though the gene regulatory mechanism for pluripotency has been investigated in recent years, it is still not completely understood. Here, we show several signaling pathways involved in the maintenance of pluripotency.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Cell therapy is a progressively growing field that is rapidly moving from preclinical model development to clinical application. Outcomes obtained from clinical trials reveal the therapeutic potential of stem cell-based therapy to deal with unmet medical treatment needs for several disorders with no therapeutic options. Among adult stem cells, mesenchymal stem cells (MSCs) are the leading cell type used in advanced therapies for the treatment of autoimmune, inflammatory and vascular diseases.

View Article and Find Full Text PDF

Boronization has been used in the National Spherical Torus-Upgrade (NSTX-U) as first wall conditioning technique. The technique decreased the oxygen impurities in the plasma and the O% on the Plasma Facing Components (PFC) as measured with an in-vacuo probe. Samples were extracted from tiles removed from the tokamak for post-mortem and controlled studies.

View Article and Find Full Text PDF

Plasma facing component (PFC) conditioning dramatically affects plasma performance in magnetic confinement fusion experiments. Lithium (Li) has been used in several machines to condition PFC with subsequent improvements to plasma performance. Multiple studies have investigated the interactions of Li with deuterium (D) and oxygen (O) in order to ascertain the mechanisms behind the enhanced plasma performance.

View Article and Find Full Text PDF

The success of chimeric antigen receptor (CAR)-mediated immunotherapy in acute lymphoblastic leukemia (ALL) highlights the potential of T-cell therapies with directed cytotoxicity against specific tumor antigens. The efficacy of CAR T-cell therapy depends on the engraftment and persistence of T cells following adoptive transfer. Most protocols for T-cell engineering routinely expand T cells for 9 to 14 days.

View Article and Find Full Text PDF

Tolerance to self-antigens prevents the elimination of cancer by the immune system. We used synthetic chimeric antigen receptors (CARs) to overcome immunological tolerance and mediate tumor rejection in patients with chronic lymphocytic leukemia (CLL). Remission was induced in a subset of subjects, but most did not respond.

View Article and Find Full Text PDF

β-cells release hexameric Zn2+-insulin into the extracellular space, but monomeric Zn2+-free insulin appears to be the only biologically active form. The mechanisms implicated in dissociation of the hexamer remain unclear, but they seem to be Zn2+ concentration-dependent. In this study, we investigate the influence of albumin binding to Zn2+ on Zn2+-insulin dissociation into Zn2+-free insulin and its physiological, methodological and therapeutic relevance.

View Article and Find Full Text PDF

Mitochondrial dysfunction and endoplasmic reticulum stress (ERS) are global processes that are interrelated and regulated by several stress factors. Nitric oxide (NO) is a multifunctional biomolecule with many varieties of physiological and pathological functions, such as the regulation of cytochrome c inhibition and activation of the immune response, ERS and DNA damage; these actions are dose-dependent. It has been reported that in embryonic stem cells, NO has a dual role, controlling differentiation, survival and pluripotency, but the molecular mechanisms by which it modulates these functions are not yet known.

View Article and Find Full Text PDF

The recent clinical success of CD19-directed chimeric antigen receptor (CAR) T cell therapy in chronic and acute leukemia has led to increased interest in broadening this technology to other hematological malignancies and solid tumors. Now, advances are being made using CAR T cell technology to target myeloma antigens such as B cell maturation antigen (BCMA), CD138, and kappa-light chain as well as CD19 on putative myeloma stem cells. To date, only a limited number of multiple myeloma patients have received CAR T cell therapy but preliminary results have been encouraging.

View Article and Find Full Text PDF

Autologous T cells modified to recognize novel antigen targets are a novel form of therapy for cancer. We review the various potential forms of observed and hypothetical toxicities associated with genetically modified T cells. Despite the focus on toxicities in this review, re-directed T cells represent a powerful and highly effective form of anti-cancer therapy; we remain optimistic that the common toxicities will become routinely manageable and that some theoretical toxicity will be exceedingly rare, if ever observed.

View Article and Find Full Text PDF