Publications by authors named "Bedika Pathak"

Article Synopsis
  • * Bone morphogenetic proteins (BMPs) influence cell development in the central nervous system and were found to increase astrogenesis in MMC conditions.
  • * The study showed that the PLA/PCL patch is biocompatible and can deliver Noggin, a BMP antagonist, which helps reduce the negative effects of BMP2 and BMP4 on neural precursor cells.
View Article and Find Full Text PDF

Radiation therapy (RT) is a crucial treatment modality for central nervous system (CNS) tumors but toxicity to healthy CNS tissues remains a challenge. Additionally, environmental exposure to radiation during nuclear catastrophes or space travel presents a risk of CNS toxicity. However, the underlying mechanisms of radiation-induced CNS toxicity are not fully understood.

View Article and Find Full Text PDF

During embryonic spinal cord development, neural progenitor cells (NPCs) generate three major cell lines: neurons, oligodendrocytes, and astrocytes at precise times and locations within the spinal cord. Recent studies demonstrate early astrogenesis in animal models of spina bifida, which may play a role in neuronal dysfunction associated with this condition. However, to date, the pathophysiological mechanisms related to this early astrocytic response in spina bifida are poorly understood.

View Article and Find Full Text PDF

A better understanding of the transcriptomic modifications that occur in spina bifida may lead to identify mechanisms involved in the progression of spina bifida in utero and the development of new therapeutic strategies that aid in spinal cord regeneration after surgical interventions. In this study, RNA-sequencing was used to identify differentially expressed genes in fetal spinal cords from rats with retinoic acid-induced spina bifida at E15, E17, and E20. Gene ontology, KEGG, and protein-protein interaction analysis were conducted to predict pathways involved in the evolution of the disease.

View Article and Find Full Text PDF

Spina bifida aperta is a congenital malformation characterized by the failure of neural tube closure resulting in an unprotected fetal spinal cord. The spinal cord then undergoes progressive damage, likely due to chemical and mechanical factors related to exposure to the intrauterine environment. Astrogliosis in exposed spinal cords has been described in animal models of spina bifida during embryonic life but its relationship with neuroinflammatory processes are completely unknown.

View Article and Find Full Text PDF