Understanding the evolution of local structure and mobility of disordered glassy materials induced by external stress is critical in modeling their mechanical deformation in the nonlinear regime. Several techniques have shown acceleration of molecular mobility of various amorphous glasses under macroscopic tensile deformation, but it remains a major challenge to visualize such a relationship at the nanoscale. Here, we employ a new approach based on atomic force microscopy in nanorheology mode for quantifying the local dynamic responses of a polymer glass induced by nanoscale compression.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2024
In a stack of atomically thin van der Waals layers, introducing interlayer twist creates a moiré superlattice whose period is a function of twist angle. Changes in that twist angle of even hundredths of a degree can dramatically transform the system's electronic properties. Setting a precise and uniform twist angle for a stack remains difficult; hence, determining that twist angle and mapping its spatial variation is very important.
View Article and Find Full Text PDFThe use of ferroelectric polarization to promote electron-hole separation has emerged as a promising strategy to improve photocatalytic activity. Although ferroelectric thin films with planar geometry have been largely studied, nanostructured and porous ferroelectric thin films have not been commonly used in photo-electrocatalysis. The inclusion of porosity in ferroelectric thin films would enhance the surface area and reactivity, leading to a potential improvement of the photoelectrochemical (PEC) performance.
View Article and Find Full Text PDFWe report on quantifiable depth-dependent contact resonance AFM (CR-AFM) measurements over polystyrene-polypropylene (PS-PP) blends to detail surface and sub-surface features in terms of elastic modulus and mechanical dissipation. The depth-dependences of the measured parameters were analyzed to generate cross-sectional images of tomographic reconstructions. Through a suitable normalization of the measured contact stiffness and indentation depth, the depth-dependence of the contact stiffness was analyzed by linear fits to obtain the elastic moduli of the materials probed.
View Article and Find Full Text PDFEstablished techniques for global gene expression profiling, such as microarrays, face fundamental sensitivity constraints. Due to greatly increasing interest in examining minute samples from micro-dissected tissues, including single cells, unorthodox approaches, including molecular nanotechnologies, are being explored in this application. Here, we examine the use of single molecule, ordered restriction mapping, combined with AFM, to measure gene transcription levels from very low abundance samples.
View Article and Find Full Text PDF