Publications by authors named "Becky Pickering"

We recently completed the total synthesis of spiruchostatin A, a depsipeptide natural product with close structural similarities to FK228, a histone deacetylase (HDAC) inhibitor (HDI) currently being evaluated in clinical trials for cancer. Here we report a detailed characterisation of the in vitro activity of spiruchostatin A. Spiruchostatin A was a potent (sub-nM) inhibitor of class I HDAC activity in vitro and acted as a prodrug, requiring reduction for activity.

View Article and Find Full Text PDF

We measured the frequency of insertions in the Mcl-1 promoter in chronic lymphocytic leukemia (CLL) and in normal individuals. Insertions were found in 37/54 (69%) of the CLL samples. However, insertions were not associated with prognostic markers and were also detected in 38/66 (58%) of normal controls and in normal cells isolated from CLL patients.

View Article and Find Full Text PDF

Translational control is a key step in eukaryotic gene expression. The majority of translational control occurs at the level of initiation, thus implicating the 5' untranslated region as a major site of translational regulation. Many growth-related mRNAs have atypical 5' UTRs, which are often long and GC-rich.

View Article and Find Full Text PDF

We have shown previously that an internal ribosome entry segment (IRES) directs the synthesis of the p36 isoform of Bag-1 and that polypyrimidine tract binding protein 1 (PTB-1) and poly(rC) binding protein 1 (PCBP1) stimulate IRES-mediated translation initiation in vitro and in vivo. Here, a secondary structural model of the Bag-1 IRES has been derived by using chemical and enzymatic probing data as constraints on the RNA folding algorithm Mfold. The ribosome entry window has been identified within this structural model and is located in a region in which many residues are involved in base-pairing interactions.

View Article and Find Full Text PDF

The 5'-untranslated region of Bag-1 mRNA contains an internal ribosome entry segment (IRES) and the translation of Bag-1 protein can be initiated by both cap-dependent and cap-independent mechanisms. In general, cellular IRESs require non-canonical trans-acting factors for their activity, however, very few of the proteins that act on cellular IRESs have been identified. Proteins that interact with viral IRESs have also been shown to stimulate the activity of cellular IRESs and therefore the ability of a range of known viral trans-acting factors to stimulate the Bag-1 IRES was tested.

View Article and Find Full Text PDF