Publications by authors named "Becky Penhallow"

Checkpoint inhibitors target the inhibitory receptors expressed by tumor-infiltrating T cells in order to reinvigorate an anti-tumor immune response. Therefore, understanding T cell composition and phenotype in human tumors is crucial. We analyzed by flow cytometry tumor-infiltrating lymphocytes (TILs) from two independent cohorts of patients with different cancer types, including RCC, lung, and colon cancer.

View Article and Find Full Text PDF

JAK2 kinase inhibitors are a promising new class of agents for the treatment of myeloproliferative neoplasms and have potential for the treatment of other diseases possessing a deregulated JAK2-STAT pathway. X-ray structure and ADME guided refinement of C-4 heterocycles to address metabolic liability present in dialkylthiazole 1 led to the discovery of a clinical candidate, BMS-911543 (11), with excellent kinome selectivity, in vivo PD activity, and safety profile.

View Article and Find Full Text PDF

A series of aminothiazoles that are potent inhibitors of LIM kinases 1 and 2 is described. Appropriate choice of substituents led to molecules with good selectivity for either enzyme. An advanced member of the series was shown to effectively interfere with the phosphorylation of the LIM kinases substrate cofilin.

View Article and Find Full Text PDF

5-Butyl-1,4-diphenyl pyrazole and 2-amino-5-chloro pyrimidine acylsulfonamides were developed as potent dual antagonists of Bcl-2 and Bcl-xL. Compounds were optimized for binding to the I88, L92, I95, and F99 pockets normally occupied by pro-apoptotic protein Bim. An X-ray crystal structure confirmed the proposed binding mode.

View Article and Find Full Text PDF

The dose response curve is the gold standard for measuring the effect of a drug treatment, but is rarely used in genomic scale transcriptional profiling due to perceived obstacles of cost and analysis. One barrier to examining transcriptional dose responses is that existing methods for microarray data analysis can identify patterns, but provide no quantitative pharmacological information. We developed analytical methods that identify transcripts responsive to dose, calculate classical pharmacological parameters such as the EC50, and enable an in-depth analysis of coordinated dose-dependent treatment effects.

View Article and Find Full Text PDF

In developing inhibitors of the LIM kinases, the initial lead molecules combined potent target inhibition with potent cytotoxic activity. However, as subsequent compounds were evaluated, the cytotoxic activity separated from inhibition of LIM kinases. A rapid determination of the cytotoxic mechanism and its molecular target was enabled by integrating data from two robust core technologies.

View Article and Find Full Text PDF

A series of structurally novel aminothiazole based small molecule inhibitors of Itk were prepared to elucidate their structure-activity relationships (SARs), selectivity, and cell activity in inhibiting IL-2 secretion in a Jurkat T-cell assay. Compound 3 is identified as a potent and selective Itk inhibitor which inhibits anti-TCR antibody induced IL-2 production in mice in vivo and was previously reported to reduce lung inflammation in a mouse model of ovalbumin induced allergy/asthma.

View Article and Find Full Text PDF

A series of structurally novel aminothiazole based small molecule inhibitors of Itk were prepared to elucidate their structure-activity relationships (SARs), selectivity and cell activity in inhibiting IL-2 secretion in a Jurkat T-cell assay. Compound 2 is identified as a potent and selective Itk inhibitor which inhibits anti-TCR antibody induced IL-2 production in mice in vivo.

View Article and Find Full Text PDF

Nonreceptor protein tyrosine kinases including Lck, ZAP-70, and Itk play essential roles in T-cell receptor (TCR) signaling. Gene knockout studies have revealed that mice lacking these individual kinases exhibit various degrees of immunodeficiency; however, highly selective small molecule inhibitors of these kinases as potential immunosuppressive agents have not been identified. Here we discovered two novel compounds, BMS-488516 and BMS-509744, that potently and selectively inhibit Itk kinase activity.

View Article and Find Full Text PDF