This paper presents a novel co-packaging approach through on-chip hybrid laser integration with photonic circuits using photonic wire bonding. The process involves die-bonding a low-cost semiconductor distributed-feedback (DFB) laser into a deep trench on a silicon-on-insulator (SOI) chip and coupling it to the silicon circuitry through photonic wire bonding (PWB). After characterizing the power-current-voltage (LIV) and optical spectrum of the laser, a wavelength-current relationship utilizing its tunability through self-heating a swept-frequency laser (SFL) is developed.
View Article and Find Full Text PDFKlebsiella pneumoniae (KP) presents a global health threat, leading to significant morbidity and mortality due to its multidrug-resistant profile and the limited availability of therapeutic options. To eliminate KP lung infection, the host initiates a robust inflammatory response. One of the host's mechanisms for mitigating excessive inflammation involves the RNA-binding protein regnase-1 (Reg1, MCPIP1, or ZC3H12A).
View Article and Find Full Text PDFUnderstanding lung immunity requires an unbiased profiling of tissue-resident T cells at their precise anatomical locations within the lung, but such information has not been characterized in the immunized mouse model. In this pilot study, using 10x Genomics Chromium and Visium platform, we performed an integrative analysis of spatial transcriptome with single-cell RNA-seq and single-cell ATAC-seq on lung cells from mice after immunization using a well-established infection model. We built an optimized deconvolution pipeline to accurately decipher specific cell-type compositions by anatomic location.
View Article and Find Full Text PDFExcessive inflammation can cause tissue damage and autoimmunity, sometimes accompanied by severe morbidity or mortality. Numerous negative feedback mechanisms exist to prevent unchecked inflammation, but this restraint may come at the cost of suboptimal infection control. Regnase-1 (MCPIP1), a feedback regulator of IL-17 and LPS signaling, binds and degrades target mRNAs.
View Article and Find Full Text PDFPredicting how species will respond to selection pressures requires understanding the factors that constrain their evolution. We use genome engineering of to investigate constraints on the repeated evolution of unrelated herbivorous insects to toxic cardiac glycosides, which primarily occurs via a small subset of possible functionally-relevant substitutions to Na,K-ATPase. Surprisingly, we find that frequently observed adaptive substitutions at two sites, 111 and 122, are lethal when homozygous and adult heterozygotes exhibit dominant neural dysfunction.
View Article and Find Full Text PDF