Hepatol Commun
March 2018
Increasingly, evidence suggests that exposure to maternal obesity creates an inflammatory environment , exerting long-lasting postnatal signatures on the juvenile innate immune system and microbiome that may predispose offspring to development of fatty liver disease. We found that exposure to a maternal Western-style diet (WD) accelerated fibrogenesis in the liver of offspring and was associated with early recruitment of proinflammatory macrophages at 8-12 weeks and microbial dysbiosis as early as 3 weeks of age. We further demonstrated that bone marrow-derived macrophages (BMDMs) were polarized toward an inflammatory state at 8 weeks of age and that a potent antioxidant, pyrroloquinoline quinone (PQQ), reversed BMDM metabolic reprogramming from glycolytic toward oxidative metabolism by restoring trichloroacetic acid cycle function at isocitrate dehydrogenase.
View Article and Find Full Text PDFThe intrauterine period is a critical time wherein developmental exposure can influence risk for chronic disease including childhood obesity. Using umbilical cord-derived mesenchymal stem cells (uMSC) from offspring born to normal-weight and obese mothers, we tested the hypothesis that changes in infant body composition over the first 5 months of life correspond with differences in cellular metabolism and transcriptomic profiles at birth. Higher long-chain acylcarnitine concentrations, lipid transport gene expression, and indicators of oxidative stress in uMSC-adipocytes were related to higher adiposity at 5 months of age.
View Article and Find Full Text PDFAdipose tissue expansion progresses rapidly during postnatal life, influenced by both prenatal maternal factors and postnatal developmental cues. The ratio of omega-6 (n-6) relative to n-3 polyunsaturated fatty acids (PUFAs) is believed to regulate perinatal adipogenesis, but the cellular mechanisms and long-term effects are not well understood. We lowered the fetal and postnatal n-6/n-3 PUFA ratio exposure in wild-type offspring under standard maternal dietary fat amounts to test the effects of low n-6/n-3 ratios on offspring adipogenesis and adipogenic potential.
View Article and Find Full Text PDFMaternal obesity is a global health problem that increases offspring obesity risk. The metabolic pathways underlying early developmental programming in human infants at risk for obesity remain poorly understood, largely due to barriers in fetal/infant tissue sampling. Utilizing umbilical cord-derived mesenchymal stem cells (uMSC) from offspring of normal weight and obese mothers, we tested whether energy metabolism and gene expression differ in differentiating uMSC myocytes and adipocytes, in relation to maternal obesity exposures and/or neonatal adiposity.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) is widespread in adults and children. Early exposure to maternal obesity or Western-style diet (WD) increases steatosis and oxidative stress in fetal liver and is associated with lifetime disease risk in the offspring. Pyrroloquinoline quinone (PQQ) is a natural antioxidant found in soil, enriched in human breast milk, and essential for development in mammals.
View Article and Find Full Text PDFBackground: Increased maternal body mass index (BMI) is a robust risk factor for later pediatric obesity. Accumulating evidence suggests that human milk (HM) may attenuate the transfer of obesity from mother to offspring, potentially through its effects on early development of the infant microbiome.
Objectives: Our objective was to identify early differences in intestinal microbiota in a cohort of breastfeeding infants born to obese compared with normal-weight (NW) mothers.
Background And Objective: Atherosclerosis is both a chronic inflammatory disease and a lipid metabolism disorder. C/EBPβ is well documented for its role in the development of hematopoietic cells and integration of lipid metabolism. However, C/EBPβ's role in atherosclerotic progression has not been examined.
View Article and Find Full Text PDFDiabetes Care
January 2016
Objective: Diet therapy in gestational diabetes mellitus (GDM) has focused on carbohydrate restriction but is poorly substantiated. In this pilot randomized clinical trial, we challenged the conventional low-carbohydrate/higher-fat (LC/CONV) diet, hypothesizing that a higher-complex carbohydrate/lower-fat (CHOICE) diet would improve maternal insulin resistance (IR), adipose tissue (AT) lipolysis, and infant adiposity.
Research Design And Methods: At 31 weeks, 12 diet-controlled overweight/obese women with GDM were randomized to an isocaloric LC/CONV (40% carbohydrate/45% fat/15% protein; n = 6) or CHOICE (60%/25%/15%; n = 6) diet.
Current estimates suggest that over one-third of the adult population has metabolic syndrome and three-fourths of the obese population has non-alcoholic fatty liver disease (NAFLD). Inflammation in metabolic tissues has emerged as a universal feature of obesity and its co-morbidities, including NAFLD. Natural Killer T (NKT) cells are a subset of innate immune cells that abundantly reside within the liver and are readily activated by lipid antigens.
View Article and Find Full Text PDFMaternal and pediatric obesity has risen dramatically over recent years, and is a known predictor of adverse long-term metabolic outcomes in offspring. However, which particular aspects of obese pregnancy promote such outcomes is less clear. While maternal obesity increases both maternal and placental inflammation, it is still unknown whether this is a dominant mechanism in fetal metabolic programming.
View Article and Find Full Text PDFStrong evidence exists for a link between chronic low level inflammation and dietary-induced insulin resistance; however, little is known about the transcriptional networks involved. Here we show that high fat diet (HFD) or saturated fatty acid exposure directly activates CCAAT/enhancer-binding protein β (C/EBPβ) protein expression in liver, adipocytes, and macrophages. Global C/EBPβ deletion prevented HFD-induced inflammation and surprisingly increased mitochondrial gene expression in white adipose tissue along with brown adipose tissue markers PRDM16, CIDEa, and UCP1, consistent with a resistance to HFD-induced obesity.
View Article and Find Full Text PDFObjective: Skeletal muscle-specific LPL knockout mouse (SMLPL(-/-)) were created to study the systemic impact of reduced lipoprotein lipid delivery in skeletal muscle on insulin sensitivity, body weight, and composition.
Research Design And Methods: Tissue-specific insulin sensitivity was assessed using a hyperinsulinemic-euglycemic clamp and 2-deoxyglucose uptake. Gene expression and insulin-signaling molecules were compared in skeletal muscle and liver of SMLPL(-/-) and control mice.
Exocytotic incorporation of plasmalemmal precursor vesicles (PPVs) into the cell surface is necessary for axonal outgrowth and is known to occur mainly at the nerve growth cone. We have demonstrated recently that plasmalemmal expansion is regulated at the growth cone by IGF-1, but not by BDNF, in a manner that is quasi independent of the neuron's perikaryon. To begin elucidating the signaling pathway by which exocytosis of the plasmalemmal precursor is regulated, we studied activation of the IRS/PI3K/Akt pathway in isolated growth cones and hippocampal neurons in culture stimulated with IGF-1 or BDNF.
View Article and Find Full Text PDFDetection of a repellent factor, such as a semaphorin (Sema), causes localized collapse of the growth cone and directs the neurite away from the repellent. Growth cone collapse results from concomitant cytoskeletal rearrangements and detachment of adhesion sites from the extracellular matrix, via mostly unknown signaling mechanisms. In cultures of dorsal root ganglion neurons, we found that Sema3A treatment stimulates the synthesis of the eicosanoid, 12(S)-hydroxyeicosatetraenoic acid (HETE), whereas Sema3A-induced growth cone collapse is prevented when 12(S)-HETE synthesis is blocked with an inhibitor of 12/15-lipoxygenase (LO).
View Article and Find Full Text PDF