Publications by authors named "Beckstette M"

Epigenetic mechanisms stabilize gene expression patterns during CD8+ T cell differentiation. Although adoptive transfer of virus-specific T cells is clinically applied to reduce the risk of virus infection or reactivation in immunocompromised individuals, the DNA methylation pattern of virus-specific CD8+ T cells is largely unknown. Hence, we here performed whole-genome bisulfite sequencing of cytomegalovirus-specific human CD8+ T cells and found that they display a unique DNA methylation pattern consisting of 79 differentially methylated regions (DMRs) when compared to memory CD8+ T cells.

View Article and Find Full Text PDF

, also knowen as the Japanese tea hortensia, is known for its sweet taste and health properties of bevarages produced from this plant. The 3,4-dihydroisocoumarins, hydrangenol and phyllodulcin harbour a variety of biological activities and pharmacological properties. Therefore, a detailed understanding of dihydroisocoumarin biosynthesis in is of major interest.

View Article and Find Full Text PDF

RNA degradation is an essential process that allows bacteria to regulate gene expression and has emerged as an important mechanism for controlling virulence. However, the individual contributions of RNases in this process are mostly unknown. Here, we tested the influence of 11 potential RNases in the intestinal pathogen Yersinia pseudotuberculosis on the expression of its type III secretion system (T3SS) and associated effectors (Yops) that are encoded on the Yersinia virulence plasmid.

View Article and Find Full Text PDF
Article Synopsis
  • Gut-draining mesenteric and celiac lymph nodes are essential for promoting tolerance to food and microbes by helping to generate regulatory T cells in the immune system.
  • A brief gastrointestinal infection during infancy disrupts the ability of celiac lymph nodes to induce these protective Tregs by changing the characteristics of specific supporting cells within the lymph nodes.
  • Lower levels of vitamin A after infection lead to lasting functional impairments in celiac lymph nodes, but early vitamin A treatment could mitigate these negative effects.
View Article and Find Full Text PDF

The current focus on renewable energy in global policy highlights the importance of methane production from biomass through anaerobic digestion (AD). To improve biomass digestion while ensuring overall process stability, microbiome-based management strategies become more important. In this study, metagenomes and metaproteomes were used for metagenomically assembled genome (MAG)-centric analyses to investigate a full-scale biogas plant consisting of three differentially operated digesters.

View Article and Find Full Text PDF

A better understanding of the genetic regulation of the biosynthesis of microbial compounds could accelerate the discovery of new biologically active molecules and facilitate their production. To this end, we have investigated the time course of genome-wide transcription in the myxobacterium Sorangium sp. So ce836 in relation to its production of natural compounds.

View Article and Find Full Text PDF
Article Synopsis
  • Gut-draining mesenteric lymph nodes play a crucial role in shaping intestinal immune responses, with differences in stromal cell composition based on location.
  • The study identifies specific progenitor cells, CD34 stromal cells and fibroblastic reticular cells, that contribute to the rapid expansion of these lymph nodes from postnatal to aged stages.
  • An epigenomic analysis reveals distinct regulatory patterns in non-endothelial stromal cells, particularly highlighting the role of the Irf3 gene in cellular differentiation and function across different lymph node types.
View Article and Find Full Text PDF

Epigenetic modifications such as DNA methylation play an essential role in imprinting specific transcriptional patterns in cells. We performed genome-wide DNA methylation profiling of murine lymph node-derived ILCs, which led to the identification of differentially methylated regions (DMRs) and the definition of epigenetic marker regions in ILCs. Marker regions were located in genes with a described function for ILCs, such as Tbx21, Gata3, or Il23r, but also in genes that have not been related to ILC biology.

View Article and Find Full Text PDF

Conventional dendritic cells (cDCs) arise from committed precursor dendritic cells (pre-DCs) in the bone marrow that continuously seed the periphery. Pre-DCs and other upstream progenitors proliferate and mature in response to Fms-related receptor tyrosine kinase 3 ligand, which is considered the key cytokine for cDC development. However, other cytokines such as stem cell factor and colony-stimulating factor 1 (CSF1) were also shown to induce pre-DC maturation into DC-like cells.

View Article and Find Full Text PDF

Our understanding of the composition and functions of splenic stromal cells remains incomplete. Here, based on analysis of over 20,000 single cell transcriptomes of splenic fibroblasts, we characterized the phenotypic and functional heterogeneity of these cells in healthy state and during virus infection. We describe eleven transcriptionally distinct fibroblastic cell clusters, reassuring known subsets and revealing yet unascertained heterogeneity amongst fibroblasts occupying diverse splenic niches.

View Article and Find Full Text PDF

Background & Aims: Thymic conventional dendritic cells (t-DCs) are crucial for the development of T cells. A substantial fraction of t-DCs originates extrathymically and migrates to the thymus. Here, these cells contribute to key processes of central tolerance like the clonal deletion of self-reactive thymocytes and the generation of regulatory T (Treg) cells.

View Article and Find Full Text PDF

Genomic surveillance of the SARS-CoV-2 pandemic is crucial and mainly achieved by amplicon sequencing protocols. Overlapping tiled-amplicons are generated to establish contiguous SARS-CoV-2 genome sequences, which enable the precise resolution of infection chains and outbreaks. We investigated a SARS-CoV-2 outbreak in a local hospital and used nanopore sequencing with a modified ARTIC protocol employing 1200 bp long amplicons.

View Article and Find Full Text PDF

Viral infections of the central nervous system cause acute or delayed neuropathology and clinical consequences ranging from asymptomatic courses to chronic, debilitating diseases. The outcome of viral encephalitis is partially determined by genetically programed immune response patterns of the host. Experimental infection of mice with Theiler's murine encephalomyelitis virus (TMEV) causes diverse neurologic diseases, including TMEV-induced demyelinating disease (TMEV-IDD), depending on the used mouse strain.

View Article and Find Full Text PDF

Background: Anaerobic digestion (AD) of protein-rich grass silage was performed in experimental two-stage two-phase biogas reactor systems at low vs. increased organic loading rates (OLRs) under mesophilic (37 °C) and thermophilic (55 °C) temperatures. To follow the adaptive response of the biomass-attached cellulolytic/hydrolytic biofilms at increasing ammonium/ammonia contents, genome-centered metagenomics and transcriptional profiling based on metagenome assembled genomes (MAGs) were conducted.

View Article and Find Full Text PDF

Intestinal Foxp3 regulatory T cell (Treg) subsets are crucial players in tolerance to microbiota-derived and food-borne antigens, and compelling evidence suggests that the intestinal microbiota modulates their generation, functional specialization, and maintenance. Selected bacterial species and microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), have been reported to promote Treg homeostasis in the intestinal lamina propria. Furthermore, gut-draining mesenteric lymph nodes (mLNs) are particularly efficient sites for the generation of peripherally induced Tregs (pTregs).

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) is a mild to moderate respiratory tract infection, however, a subset of patients progress to severe disease and respiratory failure. The mechanism of protective immunity in mild forms and the pathogenesis of severe COVID-19 associated with increased neutrophil counts and dysregulated immune responses remain unclear. In a dual-center, two-cohort study, we combined single-cell RNA-sequencing and single-cell proteomics of whole-blood and peripheral-blood mononuclear cells to determine changes in immune cell composition and activation in mild versus severe COVID-19 (242 samples from 109 individuals) over time.

View Article and Find Full Text PDF

Bacillus subtilis cells are well suited to study how bacteria sense and adapt to proteotoxic stress such as heat, since temperature fluctuations are a major challenge to soil-dwelling bacteria. Here, we show that the alarmones (p)ppGpp, well known second messengers of nutrient starvation, are also involved in the heat stress response as well as the development of thermo-resistance. Upon heat-shock, intracellular levels of (p)ppGpp rise in a rapid but transient manner.

View Article and Find Full Text PDF

Photosynthetic bacteria have to deal with the risk of photooxidative stress that occurs in presence of light and oxygen due to the photosensitizing activity of (bacterio-) chlorophylls. Facultative phototrophs of the genus adapt the formation of photosynthetic complexes to oxygen and light conditions, but cannot completely avoid this stress if environmental conditions suddenly change. has a stronger pigmentation and faster switches to phototrophic growth than .

View Article and Find Full Text PDF

A detailed knowledge about virulence-relevant genes, as well as where and when they are expressed during the course of an infection is required to obtain a comprehensive understanding of the complex host-pathogen interactions. The development of unbiased probe-independent RNA sequencing (RNA-seq) approaches has dramatically changed transcriptomics. It allows simultaneous monitoring of genome-wide, infection-linked transcriptional alterations of the host tissue and colonizing pathogens.

View Article and Find Full Text PDF

Yersinia enterocolitica is a zoonotic pathogen and an important cause of bacterial gastrointestinal infections in humans. Large-scale population genomic analyses revealed genetic and phenotypic diversity of this bacterial species, but little is known about the differences in the transcriptome organization, small RNA (sRNA) repertoire, and transcriptional output. Here, we present the first comparative high-resolution transcriptome analysis of Y.

View Article and Find Full Text PDF

The carbon storage regulator A (CsrA) is a conserved global regulatory system known to control central carbon pathways, biofilm formation, motility, and pathogenicity. The aim of this study was to characterize changes in major metabolic pathways induced by CsrA in human enteropathogenic Escherichia coli (EPEC) grown under virulence factor-inducing conditions. For this purpose, the metabolomes and transcriptomes of EPEC and an isogenic ∆csrA mutant derivative were analyzed by untargeted mass spectrometry and RNA sequencing, respectively.

View Article and Find Full Text PDF

The response to iron limitation of several bacteria is regulated by the ferric uptake regulator (Fur). The Fur-regulated transcriptional, translational and metabolic networks of the Gram-positive, pathogen were investigated by a combined RNA sequencing, proteomic, metabolomic and electron microscopy approach. At high iron conditions (15 μM) the mutant displayed a growth deficiency compared to wild type cells.

View Article and Find Full Text PDF

Gut-draining mesenteric lymph nodes (mLNs) are important for inducing peripheral tolerance towards food and commensal antigens by providing an optimal microenvironment for de novo generation of Foxp3 regulatory T cells (Tregs). We previously identified microbiota-imprinted mLN stromal cells as a critical component in tolerance induction. Here we show that this imprinting process already takes place in the neonatal phase, and renders the mLN stromal cell compartment resistant to inflammatory perturbations later in life.

View Article and Find Full Text PDF
Article Synopsis
  • Clostridioides difficile is a major cause of antibiotic-related diarrhea and has some oxygen tolerance, challenging its classification as a strictly anaerobic bacterium.
  • In an experiment, the strain C. difficile 630Δerm was grown in micro-aerobic conditions and maintained growth similar to anaerobic conditions, although significant changes in gene expression were recorded, especially in fermentation pathways and carbohydrate metabolism.
  • The study also highlighted a marked increase in oxidative stress response, particularly regarding cysteine, indicating a complex adaptation process enabling C. difficile to survive in low-oxygen environments while only minimally altering its physical characteristics.
View Article and Find Full Text PDF

Theiler's murine encephalomyelitis virus (TMEV) infection represents an experimental mouse model to study hippocampal damage induced by neurotropic viruses. IL-10 is a pleiotropic cytokine with profound anti-inflammatory properties, which critically controls immune homeostasis. In order to analyze IL-10R signaling following virus-induced polioencephalitis, SJL mice were intracerebrally infected with TMEV.

View Article and Find Full Text PDF