Publications by authors named "Beck Robin"

Ancient tooth enamel, and to some extent dentin and bone, contain characteristic peptides that persist for long periods of time. In particular, peptides from the enamel proteome (enamelome) have been used to reconstruct the phylogenetic relationships of fossil taxa. However, the enamelome is based on only about 10 genes, whose protein products undergo fragmentation in vivo and post mortem.

View Article and Find Full Text PDF
Article Synopsis
  • Noncoding DNA helps scientists understand how genes work and how they relate to diseases in humans.
  • Researchers studied the DNA of many primates to find specific regulatory parts that are important for gene regulation.
  • They discovered a lot of these regulatory elements in humans that are different from those in other mammals, which can help explain human traits and health issues.
View Article and Find Full Text PDF

Understanding the drivers of speciation is fundamental in evolutionary biology, and recent studies highlight hybridization as an important evolutionary force. Using whole-genome sequencing data from 22 species of guenons (tribe Cercopithecini), one of the world's largest primate radiations, we show that rampant gene flow characterizes their evolutionary history and identify ancient hybridization across deeply divergent lineages that differ in ecology, morphology, and karyotypes. Some hybridization events resulted in mitochondrial introgression between distant lineages, likely facilitated by cointrogression of coadapted nuclear variants.

View Article and Find Full Text PDF

Bats are among the most recognizable, numerous, and widespread of all mammals. But much of their fossil record is missing, and bat origins remain poorly understood, as do the relationships of early to modern bats. Here, we describe a new early Eocene bat that helps bridge the gap between archaic stem bats and the hyperdiverse modern bat radiation of more than 1,460 living species.

View Article and Find Full Text PDF

Diprotodontians are the morphologically and ecologically most diverse order of marsupials. However, an approximately 30-million-year gap in the Australian terrestrial vertebrate fossil record means that the first half of diprotodontian evolution is unknown. Fossil taxa from immediately either side of this gap are therefore critical for reconstructing the early evolution of the order.

View Article and Find Full Text PDF

The rich diversity of morphology and behavior displayed across primate species provides an informative context in which to study the impact of genomic diversity on fundamental biological processes. Analysis of that diversity provides insight into long-standing questions in evolutionary and conservation biology and is urgent given severe threats these species are facing. Here, we present high-coverage whole-genome data from 233 primate species representing 86% of genera and all 16 families.

View Article and Find Full Text PDF

Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole-genome sequencing data for 809 individuals from 233 primate species and identified 4.3 million common protein-altering variants with orthologs in humans.

View Article and Find Full Text PDF

Unlabelled: Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole genome sequencing data for 809 individuals from 233 primate species, and identified 4.3 million common protein-altering variants with orthologs in human.

View Article and Find Full Text PDF

Incorporating morphological data into modern phylogenies allows integration of fossil evidence, facilitating divergence dating and macroevolutionary inferences. Improvements in the phylogenetic utility of morphological data have been sought via Procrustes-based geometric morphometrics (GMM), but with mixed success and little clarity over what anatomical areas are most suitable. Here, we assess GMM-based phylogenetic reconstructions in a heavily sampled source of discrete characters for mammalian phylogenetics-the basicranium-in 57 species of marsupial mammals, compared with the remainder of the cranium.

View Article and Find Full Text PDF

There have been multiple published phylogenetic analyses of platyrrhine primates (New World monkeys) using both morphological and molecular data, but relatively few that have integrated both types of data into a total evidence approach. Here, we present phylogenetic analyses of recent and fossil platyrrhines, based on a total evidence data set of 418 morphological characters and 10.2 kilobases of DNA sequence data from 17 nuclear genes taken from previous studies, using undated and tip-dating approaches in a Bayesian framework.

View Article and Find Full Text PDF

A new molecular phylogeny of a remarkable radiation of New Guinean and Australian rodents indicates multiple transitions between biomes and biogeographical regions within the group, and suggests that a key role was played by the geological history of New Guinea.

View Article and Find Full Text PDF

Mitochondrial DNA remains a cornerstone for molecular ecology, especially for study species from which high-quality tissue samples cannot be easily obtained. Methods using mitochondrial markers are usually reliant on reference databases, but these are often incomplete. Furthermore, available mitochondrial genomes often lack crucial metadata, such as sampling location, limiting their utility for many analyses.

View Article and Find Full Text PDF

The pygmy marmoset, the smallest of the anthropoid primates, has a broad distribution in Western Amazonia. Recent studies using molecular and morphological data have identified two distinct species separated by the Napo and Solimões-Amazonas rivers. However, reconciling this new biological evidence with current taxonomy, i.

View Article and Find Full Text PDF

Little is known about how the large brains of mammals are accommodated into the dazzling diversity of their skulls. It has been suggested that brain shape is influenced by relative brain size, that it evolves or develops according to extrinsic or intrinsic mechanical constraints, and that its shape can provide insights into its proportions and function. Here, we characterize the shape variation among 84 marsupial cranial endocasts of 57 species including fossils, using three-dimensional geometric morphometrics and virtual dissections.

View Article and Find Full Text PDF

We describe the partial cranium and skeleton of a new diprotodontian marsupial from the late Oligocene (~26-25 Ma) Namba Formation of South Australia. This is one of the oldest Australian marsupial fossils known from an associated skeleton and it reveals previously unsuspected morphological diversity within Vombatiformes, the clade that includes wombats (Vombatidae), koalas (Phascolarctidae) and several extinct families. Several aspects of the skull and teeth of the new taxon, which we refer to a new family, are intermediate between members of the fossil family Wynyardiidae and wombats.

View Article and Find Full Text PDF

The estimation of the timing of major divergences in early mammal evolution is challenging owing to conflicting interpretations of key fossil taxa. One contentious group is Haramiyida, the earliest members of which are from the Late Triassic. Many phylogenetic analyses have placed haramiyidans in a clade with multituberculates within crown Mammalia, thus extending the minimum divergence date for the crown group deep into the Triassic.

View Article and Find Full Text PDF

Phylogenies of mammals based on morphological data continue to show several major areas of conflict with the current consensus view of their relationships, which is based largely on molecular data. This raises doubts as to whether current morphological character sets are able to accurately resolve mammal relationships. We tested this under a hypothetical 'best case scenario' by using ancestral state reconstruction (under both maximum parsimony and maximum likelihood) to infer the morphologies of fossil ancestors for all clades present in a recent comprehensive DNA sequence-based phylogeny of mammals, and then seeing what effect the subsequent inclusion of these predicted ancestors had on unconstrained phylogenetic analyses of morphological data.

View Article and Find Full Text PDF

A new genus and species of fossil bat is described from New Zealand's only pre-Pleistocene Cenozoic terrestrial fauna, the early Miocene St Bathans Fauna of Central Otago, South Island. Bayesian total evidence phylogenetic analysis places this new Southern Hemisphere taxon among the burrowing bats (mystacinids) of New Zealand and Australia, although its lower dentition also resembles Africa's endemic sucker-footed bats (myzopodids). As the first new bat genus to be added to New Zealand's fauna in more than 150 years, it provides new insight into the original diversity of chiropterans in Australasia.

View Article and Find Full Text PDF

Background: The order Dasyuromorphia is a diverse radiation of faunivorous marsupials, comprising >80 modern species in Australia and New Guinea. It includes dasyurids, the numbat (the myrmecobiid Myrmecobius fasciatus) and the recently extinct thylacine (the thylacinid Thylacinus cyncocephalus). There is also a diverse fossil record of dasyuromorphians and "dasyuromorphian-like" taxa known from Australia.

View Article and Find Full Text PDF

The skull of the polydolopimorphian marsupialiform is described in detail for the first time, based on a single well-preserved cranium and associated left and right dentaries plus additional craniodental fragments, all from the early Eocene (53-50 million year old) Itaboraí fauna in southeastern Brazil. Notable craniodental features of include absence of a masseteric process, very small maxillopalatine fenestrae, a prominent pterygoid fossa enclosed laterally by a prominent ectopterygoid crest, an absent or tiny transverse canal foramen, a simple, planar glenoid fossa, and a postglenoid foramen that is immediately posterior to the postglenoid process. Most strikingly, the floor of the hypotympanic sinus was apparently unossified, a feature found in several stem marsupials but absent in all known crown marsupials.

View Article and Find Full Text PDF

Background: Mental and emotional self-help apps have emerged as potential mental illness prevention and treatment tools. The health behavior theory mechanisms by which these apps influence mental health-related behavior change have not been thoroughly examined.

Objective: The objective of this study was to examine the association between theoretical behavior change mechanisms and use of mental and emotional self-help apps and whether the use of such apps is associated with mental health behaviors.

View Article and Find Full Text PDF

We describe a near-complete, three-dimensionally preserved skeleton of a metatherian (relative of modern marsupials) from the middle Eocene (Lutetian: 44-43 million years ago) Lülük member of the Uzunçarşıdere Formation, central Turkey. With an estimated body mass of 3-4 kg, about the size of a domestic cat (Felis catus) or spotted quoll (Dasyurus maculatus), it is an order of magnitude larger than the largest fossil metatherians previously known from the Cenozoic of the northern hemisphere. This new taxon is characterised by large, broad third premolars that probably represent adaptations for hard object feeding (durophagy), and its craniodental morphology suggests the capacity to generate high bite forces.

View Article and Find Full Text PDF

There is increasing evidence that early mammals evolved rapidly into a range of body forms and habitats, right under the noses of the dinosaurs.

View Article and Find Full Text PDF

Analyses of a comprehensive morphological character matrix of mammals using 'relaxed' clock models (which simultaneously estimate topology, divergence dates and evolutionary rates), either alone or in combination with an 8.5 kb nuclear sequence dataset, retrieve implausibly ancient, Late Jurassic-Early Cretaceous estimates for the initial diversification of Placentalia (crown-group Eutheria). These dates are much older than all recent molecular and palaeontological estimates.

View Article and Find Full Text PDF