Big data has ushered in a new wave of predictive power using machine-learning models. In this work, we assess what big means in the context of typical materials-science machine-learning problems. This concerns not only data volume, but also data quality and veracity as much as infrastructure issues.
View Article and Find Full Text PDFListeria monocytogenes, a potentially fatal foodborne pathogen commonly found in food processing facilities, creates a significant economic burden that totals more than $2 billion annually in the United States due to outbreaks. Quaternary ammonium compounds (QACs), including benzalkonium chloride (BAC), are among the most widely used sanitizers to inhibit the growth and spread of L. monocytogenes from food processing facilities.
View Article and Find Full Text PDFIntroduction: This study is the final part of a two-part series that delves into the molecular mechanisms driving adaptive laboratory evolution (ALE) of in acid stress. The phenotypic and transcriptomic alterations in the acid-evolved lineages (EL) of serovar Enteritidis after 70 days of acid stress exposure were analyzed.
Materials And Methods: The stability of phenotypic changes observed after 70 days in acetic acid was explored after stress removal using a newly developed evolutionary lineage EL5.
Introduction: Adaptive laboratory evolution (ALE) studies play a crucial role in understanding the adaptation and evolution of different bacterial species. In this study, we have investigated the adaptation and evolution of serovar Enteritidis to acetic acid using ALE.
Materials And Methods: Acetic acid concentrations below the minimum inhibitory concentration (sub-MIC) were used.
Identifying virus-host interactions on the cell surface can improve our understanding of viral entry and pathogenesis. SARS-CoV-2, the causative agent of the COVID-19 disease, uses ACE2 as a receptor to enter cells. Yet the full repertoire of cell surface proteins that contribute to viral entry is unknown.
View Article and Find Full Text PDFReceptor-ligand interactions play essential signaling roles within intercellular contact regions. This is particularly important within the context of the immune synapse where protein communication at the surface of physically interacting T cells and antigen-presenting cells regulate downstream immune signaling responses. To identify protein microenvironments within immunological synapses, we combined a flavin-dependent photocatalytic labeling strategy with quantitative mass spectrometry-based proteomics.
View Article and Find Full Text PDFThe basal complex (BC) is essential for T. gondii cell division but mechanistic details are lacking. Here we report a reciprocal proximity based biotinylation approach to map the BC's proteome.
View Article and Find Full Text PDFReceptor tyrosine kinases are involved in essential signaling roles that impact cell growth, differentiation, and proliferation. The overexpression or mutation of these proteins can lead to aberrant signaling that has been directly linked to a number of diseases including cancer cell formation and progression. This has led to intense clinical focus on modulating RTK activity through direct targeting of signaling activity or cell types harboring aberrant RTK behavior.
View Article and Find Full Text PDFThe role of specific host cell surface receptors during Toxoplasma gondii invasion of host cells is poorly defined. Here, we interrogated the role of the well-known malarial invasion receptor, basigin, in T. gondii infection of astrocytes.
View Article and Find Full Text PDFMulticellular organisms depend on physical cell-cell interactions to control physiological processes such as tissue formation, neurotransmission and immune response. These intercellular binding events can be both highly dynamic in their duration and complex in their composition, involving the participation of many different surface and intracellular biomolecules. Untangling the intricacy of these interactions and the signaling pathways they modulate has greatly improved insight into the biological processes that ensue upon cell-cell engagement and has led to the development of protein- and cell-based therapeutics.
View Article and Find Full Text PDFThe foodborne pathogen Listeria monocytogenes is able to survive across a wide range of intra- and extra-host environments by appropriately modulating gene expression patterns in response to different stimuli. Positive Regulatory Factor A (PrfA) is the major transcriptional regulator of virulence gene expression in L. monocytogenes.
View Article and Find Full Text PDFThe host cell invasion process of apicomplexan parasites like is facilitated by sequential exocytosis of the microneme, rhoptry and dense granule organelles. Exocytosis is facilitated by a double C2 domain (DOC2) protein family. This class of C2 domains is derived from an ancestral calcium (Ca) binding archetype, although this feature is optional in extant C2 domains.
View Article and Find Full Text PDFFront Microbiol
February 2021
is the major causative agent of the foodborne illness listeriosis. Listeriosis presents as flu-like symptoms in healthy individuals, and can be fatal for children, elderly, pregnant women, and immunocompromised individuals. Estimates suggest that results in ∼1,600 illnesses and ∼260 deaths annually in the United States.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFKarst aquifers provide drinking water for 10% of the world's population, support agriculture, groundwater-dependent activities, and ecosystems. These aquifers are characterised by complex groundwater-flow systems, hence, they are extremely vulnerable and protecting them requires an in-depth understanding of the systems. Poor data accessibility has limited advances in karst research and realistic representation of karst processes in large-scale hydrological studies.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) is the initial site of biogenesis of secretory pathway proteins, including proteins localized to the ER, Golgi, lysosomes, intracellular vesicles, plasma membrane, and extracellular compartments. Proteins within the secretory pathway contain a high abundance of disulfide bonds to protect against the oxidative extracellular environment. These disulfide bonds are typically formed within the ER by a variety of oxidoreductases, including members of the protein disulfide isomerase (PDI) family.
View Article and Find Full Text PDFThe apical annuli are among the most intriguing and understudied structures in the cytoskeleton of the apicomplexan parasite Toxoplasma gondii. We mapped the proteome of the annuli in Toxoplasma by reciprocal proximity biotinylation (BioID), and validated five apical annuli proteins (AAP1-5), Centrin2, and an apical annuli methyltransferase. Moreover, inner membrane complex (IMC) suture proteins connecting the alveolar vesicles were also detected and support annuli residence within the sutures.
View Article and Find Full Text PDFCysteine residues are concentrated at key functional sites within proteins, performing diverse roles in metal binding, catalysis, and redox chemistry. Chemoproteomic platforms to interrogate the reactive cysteinome have developed significantly over the past 10 years, resulting in a greater understanding of cysteine functionality, modification, and druggability. Recently, chemoproteomic methods to examine reactive cysteine residues from specific subcellular organelles have provided significantly improved proteome coverage and highlights the unique functionalities of cysteine residues mediated by cellular localization.
View Article and Find Full Text PDFMotivated by the proposed use of cationic protein-modified sand for water filtration in developing nations, this study concerns the adsorption of Moringa oleifera seed proteins to silica surfaces. These proteins were prepared in model waters of varying hardness and underwent different levels of fractionation, including fatty acid extraction and cation exchange chromatography. Adsorption isotherms were measured by ellipsometry, and the zeta potentials of the resulting protein-decorated surfaces were measured by the rotating disk streaming potential method.
View Article and Find Full Text PDFMany citrullinated proteins are known autoantigens in rheumatoid arthritis, a disease mediated by inflammatory cytokines, such as tumor necrosis factor-α (TNFα). Citrullinated proteins are generated by converting peptidylarginine to peptidylcitrulline, a process catalyzed by the peptidylarginine deiminases (PADs), including PAD1 to PAD4 and PAD6. Several major risk factors for rheumatoid arthritis are associated with heightened citrullination.
View Article and Find Full Text PDFThis review provides a comprehensive overview of the functional roles of disulfide bonds and their relevance to human disease. The critical roles of disulfide bonds in protein structure stabilization and redox regulation of protein activity are addressed. Disulfide bonds are essential to the structural stability of many proteins within the secretory pathway and can exist as intramolecular or inter-domain disulfides.
View Article and Find Full Text PDFInhibitors of Rho-associated protein kinase (ROCK) enzymatic activity have been shown to reduce the invasive phenotype observed in metastatic hepatocellular carcinoma (HCC). We describe the design, synthesis, and evaluation of a direct probe for ROCK activity utilizing a phosphorylation-sensitive sulfonamido-oxine fluorophore, termed Sox. The Sox fluorophore undergoes an increase in fluorescence upon phosphorylation of a proximal amino acid via chelation-enhanced fluorescence (CHEF, ex.
View Article and Find Full Text PDF