Publications by authors named "Bechinger C"

Activity and autonomous motion are fundamental aspects of many living and engineering systems. Here, the scale of biological agents covers a wide range, from nanomotors, cytoskeleton, and cells, to insects, fish, birds, and people. Inspired by biological active systems, various types of autonomous synthetic nano- and micromachines have been designed, which provide the basis for multifunctional, highly responsive, intelligent active materials.

View Article and Find Full Text PDF

Swarm robots offer fascinating opportunities to perform complex tasks beyond the capabilities of individual machines. Just as a swarm of ants collectively moves large objects, similar functions can emerge within a group of robots through individual strategies based on local sensing. However, realizing collective functions with individually controlled microrobots is particularly challenging because of their micrometer size, large number of degrees of freedom, strong thermal noise relative to the propulsion speed, and complex physical coupling between neighboring microrobots.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how active Brownian particles behave when trapped in a soft, annulus-shaped channel, uncovering unique properties due to confinement.
  • A new "reentrant behavior" is noted, which doesn't occur in systems without confinement, suggesting a complex relationship between confinement strength and particle dynamics.
  • The results are supported by simulations and analyses, demonstrating that interactions between the Péclet number and the confining dimensions can prevent clogging at soft boundaries.
View Article and Find Full Text PDF

Surface-engineered magnetic microparticles are used in chemical and biomedical engineering due to their ease of synthesis, high surface-to-volume ratio, selective binding, and magnetic separation. To separate them from fluid suspensions, existing methods rely on the magnetic force introduced by the local magnetic field gradient. However, this strategy has poor scalability because the magnetic field gradient decreases rapidly as one moves away from the magnets.

View Article and Find Full Text PDF

When a colloidal probe is forced through a viscoelastic fluid which is characterized by a long stress-relaxation time, the fluid is excited out of equilibrium. This is leading to a number of interesting effects including a non-trivial recoil of the probe when the driving force is removed. Here, we experimentally and theoretically investigate the transient recoil dynamics of non-spherical particles, i.

View Article and Find Full Text PDF

Collective self-organization of animal groups is a recurring phenomenon in nature which has attracted a lot of attention in natural and social sciences. To understand how collective motion can be achieved without the presence of an external control, social interactions have been considered which regulate the motion and orientation of neighbors relative to each other. Here, we want to understand the motivation and possible reasons behind the emergence of such interaction rules using an experimental model system of light-responsive active colloidal particles (APs).

View Article and Find Full Text PDF

Magnetic continuum soft robots can actively steer their tip under an external magnetic field, enabling them to effectively navigate in complex in vivo environments and perform minimally invasive interventions. However, the geometries and functionalities of these robotic tools are limited by the inner diameter of the supporting catheter as well as the natural orifices and access ports of the human body. Here, we present a class of magnetic soft-robotic chains (MaSoChains) that can self-fold into large assemblies with stable configurations using a combination of elastic and magnetic energies.

View Article and Find Full Text PDF

Understanding why animals organize in collective states is a central question of current research in, e.g., biology, physics, and psychology.

View Article and Find Full Text PDF

The motion of a colloidal probe in a viscoelastic fluid is described by friction or mobility, depending on whether the probe is moving with a velocity or feeling a force. While the Einstein relation describes an inverse relationship valid for Newtonian solvents, both concepts are generalized to time-dependent memory kernels in viscoelastic fluids. We theoretically and experimentally investigate their relation by considering two observables: the recoil after releasing a probe that was moved through the fluid and the equilibrium mean squared displacement (MSD).

View Article and Find Full Text PDF

The understanding of friction at nano-scales, ruled by the regular arrangement of atoms, is surprisingly incomplete. Here we provide a unified understanding by studying the interlocking potential energy of two infinite contacting surfaces with arbitrary lattice symmetries, and extending it to finite contacts. We categorize, based purely on geometrical features, all possible contacts into three different types: a structurally lubric contact where the monolayer can move isotropically without friction, a corrugated and strongly interlocked contact, and a newly discovered directionally structurally lubric contact where the layer can move frictionlessly along one specific direction and retains finite friction along all other directions.

View Article and Find Full Text PDF

In the last 20 years, active matter has been a highly dynamic field of research, bridging fundamental aspects of non-equilibrium thermodynamics with applications to biology, robotics, and nano-medicine. Active matter systems are composed of units that can harvest and harness energy and information from their environment to generate complex collective behaviours and forms of self-organisation. On Earth, gravity-driven phenomena (such as sedimentation and convection) often dominate or conceal the emergence of these dynamics, especially for soft active matter systems where typical interactions are of the order of the thermal energy.

View Article and Find Full Text PDF

Despite their technological relevance, a full microscopic understanding of glasses is still lacking. This applies even more to their surfaces whose properties largely differ from that of the bulk material. Here, we experimentally investigate the surface of a two-dimensional glass as a function of the effective temperature.

View Article and Find Full Text PDF

We experimentally determine the force exerted by a bath of active particles onto a passive probe as a function of its distance to a wall and compare it to the measured averaged density distribution of active particles around the probe. Within the framework of an active stress, we demonstrate that both quantities are-up to a factor-directly related to each other. Our results are in excellent agreement with a minimal numerical model and confirm a general and system-independent relationship between the microstructure of active particles and transmitted forces.

View Article and Find Full Text PDF

Active Brownian particles (APs) have recently been shown to exhibit enhanced rotational diffusion (ERD) in complex fluids. Here, we experimentally observe ERD and numerically corroborate its microscopic origin for a quasi-two-dimensional suspension of colloidal rods. At high density, the rods form small rafts, wherein they perform small-amplitude, high-frequency longitudinal displacements.

View Article and Find Full Text PDF

We experimentally and numerically study the flow of programmable active particles (APs) with tunable cohesion strength through geometric constrictions. Similar to purely repulsive granular systems, we observe an exponential distribution of burst sizes and power-law-distributed clogging durations. Upon increasing cohesion between APs, we find a rather abrupt transition from an arch-dominated clogging regime to a cohesion-dominated regime where droplets form at the aperture of the bottleneck.

View Article and Find Full Text PDF

We investigate the hopping dynamics of a colloidal particle across a potential barrier and within a viscoelastic, i.e., non-Markovian, bath and report two clearly separated timescales in the corresponding waiting time distributions.

View Article and Find Full Text PDF

We experimentally investigate the work fluctuations of an active Brownian particle (ABP) during its self-propelled motion in a viscoelastic medium. Under such conditions, ABPs display a persistent circular motion which allows the determination of the orientational work fluctuations along its trajectory. Due to the nonlinear coupling to the non-Markovian bath, we find strong deviations from the work fluctuation theorem (WFT) due to observed increased rotational ABP dynamics.

View Article and Find Full Text PDF

We perform micro-rheological experiments with a colloidal bead driven through a viscoelastic worm-like micellar fluid and observe two distinctive shear thinning regimes, each of them displaying a Newtonian-like plateau. The shear thinning behavior at larger velocities is in qualitative agreement with macroscopic rheological experiments. The second process, observed at Weissenberg numbers as small as a few percent, appears to have no analog in macro-rheological findings.

View Article and Find Full Text PDF

We study the behavior of active particles (APs) moving in a viscoelastic fluid in the presence of geometrical confinements. Upon approaching a flat wall, we find that APs slow down due to compression of the enclosed viscoelastic fluid. In addition, they receive a viscoelastic torque leading to sudden orientational changes and departure from walls.

View Article and Find Full Text PDF

Understanding the drift motion and dynamical locking of crystalline clusters on patterned substrates is important for the diffusion and manipulation of nano- and microscale objects on surfaces. In a previous work, we studied the orientational and directional locking of colloidal two-dimensional clusters with triangular structure driven across a triangular substrate lattice. Here we show with experiments and simulations that such locking features arise for clusters with arbitrary lattice structure sliding across arbitrary regular substrates.

View Article and Find Full Text PDF

We study the temperature-dependence of critical Casimir interactions in a critical micellar solution of the nonionic surfactant C12E5 dissolved in water. Experimentally, this is achieved with total internal reflection microscopy (TIRM) which measures the interaction between a single particle and a flat wall. For comparison, we also studied the pair interactions of a two dimensional layer of colloidal particles in the identical micellar system which yields good agreement with the TIRM results.

View Article and Find Full Text PDF

Bayesian inference is a conscientious statistical method which is successfully used in many branches of physics and engineering. Compared to conventional approaches, it makes highly efficient use of information hidden in a measured quantity by predicting the distribution of future data points based on posterior information. Here we apply this method to determine the stress-relaxation time and the solvent and polymer contributions to the frequency dependent viscosity of a viscoelastic Jeffrey's fluid by the analysis of the measured trajectory of an optically trapped Brownian particle.

View Article and Find Full Text PDF