Background: Artificial Intelligence entails the application of computer algorithms to the huge and heterogeneous amount of morphodynamic data produced by Time-Lapse Technology. In this context, Machine Learning (ML) methods were developed in order to assist embryologists with automatized and objective predictive models able to standardize human embryo assessment. In this study, we aimed at developing a novel ML-based strategy to identify relevant patterns associated with the prediction of blastocyst development stage on day 5.
View Article and Find Full Text PDFBackground: The analysis of large and complex biological datasets in bioinformatics poses a significant challenge to achieving reproducible research outcomes due to inconsistencies and the lack of standardization in the analysis process. These issues can lead to discrepancies in results, undermining the credibility and impact of bioinformatics research and creating mistrust in the scientific process. To address these challenges, open science practices such as sharing data, code, and methods have been encouraged.
View Article and Find Full Text PDFSingle-cell RNA sequencing (scRNA-seq) has emerged as a vital tool in tumour research, enabling the exploration of molecular complexities at the individual cell level. It offers new technical possibilities for advancing tumour research with the potential to yield significant breakthroughs. However, deciphering meaningful insights from scRNA-seq data poses challenges, particularly in cell annotation and tumour subpopulation identification.
View Article and Find Full Text PDFAmong the several mechanisms accounting for endocrine resistance in breast cancer, autophagy has emerged as an important player. Previous reports have evidenced that tamoxifen (Tam) induces autophagy and activates transcription factor EB (TFEB), which regulates the expression of genes controlling autophagy and lysosomal biogenesis. However, the mechanisms by which this occurs have not been elucidated as yet.
View Article and Find Full Text PDFObjective: Computational models are at the forefront of the pursuit of personalized medicine thanks to their descriptive and predictive abilities. In the presence of complex and heterogeneous data, patient stratification is a prerequisite for effective precision medicine, since disease development is often driven by individual variability and unpredictable environmental events. Herein, we present GreatNectorworkflow as a valuable tool for (i) the analysis and clustering of patient-derived longitudinal data, and (ii) the simulation of the resulting model of patient-specific disease dynamics.
View Article and Find Full Text PDFMotivation: The transition from evaluating a single time point to examining the entire dynamic evolution of a system is possible only in the presence of the proper framework. The strong variability of dynamic evolution makes the definition of an explanatory procedure for data fitting and clustering challenging.
Results: We developed CONNECTOR, a data-driven framework able to analyze and inspect longitudinal data in a straightforward and revealing way.
Introduction: Orthognathic patients are advocating an active role in selecting their appropriate ortho-surgical treatment, between the surgery first (SF) and the traditional sequence (TS) approaches. The aim of this study was to evaluate, through qualitative analysis, the subjective perceptions of the outcomes of each protocol.
Methods: In-depth interviews were conducted with 46 (10 male and 36 female) orthognathic patients (23 SF and 23 TS) treated with bimaxillary orthognathic surgery by the same surgeon, between 2013 and 2015.
The idea behind novel single-cell RNA sequencing (scRNA-seq) pipelines is to isolate single cells through microfluidic approaches and generate sequencing libraries in which the transcripts are tagged to track their cell of origin. Modern scRNA-seq platforms are capable of analyzing up to many thousands of cells in each run. Then, combined with massive high-throughput sequencing producing billions of reads, scRNA-seq allows the assessment of fundamental biological properties of cell populations and biological systems at unprecedented resolution.
View Article and Find Full Text PDFSingle-cell RNA sequencing (scRNA-seq) allows the creation of large collections of individual cells transcriptome. Unsupervised clustering is an essential element for the analysis of these data, and it represents the initial step for the identification of different cell types to investigate the cell subpopulation organization of a sample. In this chapter, we describe how to approach the clustering of single-cell RNAseq transcriptomics data using various clustering tools, and we provide some information on the limitations affecting the clustering procedure.
View Article and Find Full Text PDFBackground: Spatial transcriptomics (ST) combines stained tissue images with spatially resolved high-throughput RNA sequencing. The spatial transcriptomic analysis includes challenging tasks like clustering, where a partition among data points (spots) is defined by means of a similarity measure. Improving clustering results is a key factor as clustering affects subsequent downstream analysis.
View Article and Find Full Text PDFBackground: Biological processes are based on complex networks of cells and molecules. Single cell multi-omics is a new tool aiming to provide new incites in the complex network of events controlling the functionality of the cell.
Methods: Since single cell technologies provide many sample measurements, they are the ideal environment for the application of Deep Learning and Machine Learning approaches.
Minimal residual disease (MRD) determined by classic polymerase chain reaction (PCR) methods is a powerful outcome predictor in mantle cell lymphoma (MCL). Nevertheless, some technical pitfalls can reduce the rate of of molecular markers. Therefore, we applied the EuroClonality-NGS IGH (next-generation sequencing immunoglobulin heavy chain) method (previously published in acute lymphoblastic leukaemia) to 20 MCL patients enrolled in an Italian phase III trial sponsored by Fondazione Italiana Linfomi.
View Article and Find Full Text PDFBackground: Disruption of alternative splicing (AS) is frequently observed in cancer and might represent an important signature for tumor progression and therapy. Exon skipping (ES) represents one of the most frequent AS events, and in non-small cell lung cancer (NSCLC) MET exon 14 skipping was shown to be targetable.
Methods: We constructed neural networks (NN/CNN) specifically designed to detect MET exon 14 skipping events using RNAseq data.
Background: Graphs are mathematical structures widely used for expressing relationships among elements when representing biomedical and biological information. On top of these representations, several analyses are performed. A common task is the search of one substructure within one graph, called target.
View Article and Find Full Text PDFSingle-cell RNAseq data can be generated using various technologies, spanning from isolation of cells by FACS sorting or droplet sequencing, to the use of frozen tissue sections retaining spatial information of cells in their morphological context. The analysis of single cell RNAseq data is mainly focused on the identification of cell subpopulations characterized by specific gene markers that can be used to purify the population of interest for further biological studies. This chapter describes the steps required for dataset clustering and markers detection using a droplet dataset and a spatial transcriptomics dataset.
View Article and Find Full Text PDFAnalysis of circular RNA (circRNA) expression from RNA-Seq data can be performed with different algorithms and analysis pipelines, tools allowing the extraction of heterogeneous information on the expression of this novel class of RNAs. Computational pipelines were developed to facilitate the analysis of circRNA expression by leveraging different public tools in easy-to-use pipelines. This chapter describes the complete workflow for a computationally reproducible analysis of circRNA expression starting for a public RNA-Seq experiment.
View Article and Find Full Text PDFSingle-cell RNA sequencing (scRNAseq) is an essential tool to investigate cellular heterogeneity. Thus, it would be of great interest being able to disclose biological information belonging to cell subpopulations, which can be defined by clustering analysis of scRNAseq data. In this manuscript, we report a tool that we developed for the functional mining of single cell clusters based on Sparsely-Connected Autoencoder (SCA).
View Article and Find Full Text PDFBackground: Multiple Sclerosis (MS) represents nowadays in Europe the leading cause of non-traumatic disabilities in young adults, with more than 700,000 EU cases. Although huge strides have been made over the years, MS etiology remains partially unknown. Furthermore, the presence of various endogenous and exogenous factors can greatly influence the immune response of different individuals, making it difficult to study and understand the disease.
View Article and Find Full Text PDFBackground: Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), the causative agent of the coronavirus disease 19 (COVID-19), is a highly transmittable virus. Since the first person-to-person transmission of SARS-CoV-2 was reported in Italy on February 21, 2020, the number of people infected with SARS-COV-2 increased rapidly, mainly in northern Italian regions, including Piedmont. A strict lockdown was imposed on March 21 until May 4 when a gradual relaxation of the restrictions started.
View Article and Find Full Text PDFBackground: Emerging and re-emerging infectious diseases such as Zika, SARS, ncovid19 and Pertussis, pose a compelling challenge for epidemiologists due to their significant impact on global public health. In this context, computational models and computer simulations are one of the available research tools that epidemiologists can exploit to better understand the spreading characteristics of these diseases and to decide on vaccination policies, human interaction controls, and other social measures to counter, mitigate or simply delay the spread of the infectious diseases. Nevertheless, the construction of mathematical models for these diseases and their solutions remain a challenging tasks due to the fact that little effort has been devoted to the definition of a general framework easily accessible even by researchers without advanced modelling and mathematical skills.
View Article and Find Full Text PDFBackground: Multiple Sclerosis (MS) is an immune-mediated inflammatory disease of the Central Nervous System (CNS) which damages the myelin sheath enveloping nerve cells thus causing severe physical disability in patients. Relapsing Remitting Multiple Sclerosis (RRMS) is one of the most common form of MS in adults and is characterized by a series of neurologic symptoms, followed by periods of remission. Recently, many treatments were proposed and studied to contrast the RRMS progression.
View Article and Find Full Text PDFBackground: Single-cell RNA sequencing is essential for investigating cellular heterogeneity and highlighting cell subpopulation-specific signatures. Single-cell sequencing applications have spread from conventional RNA sequencing to epigenomics, e.g.
View Article and Find Full Text PDFMost of the patients with Pancreatic Ductal Adenocarcinoma (PDA) are not eligible for a curative surgical resection. For this reason there is an urgent need for personalized therapies. PDA is the result of complex interactions between tumor molecular profile and metabolites produced by its microenvironment.
View Article and Find Full Text PDFBackground: Reproducibility of a research is a key element in the modern science and it is mandatory for any industrial application. It represents the ability of replicating an experiment independently by the location and the operator. Therefore, a study can be considered reproducible only if all used data are available and the exploited computational analysis workflow is clearly described.
View Article and Find Full Text PDF