As new SARS-CoV-2 variants continue to emerge and impact communities worldwide, next-generation vaccines that enhance protective mucosal immunity may have a significant impact on productive infection and transmission. We have developed recombinant non-replicating adenovirus serotype 5 (rAd5) vaccines delivered by mucosal administration that express both target antigen and a novel molecular adjuvant within the same cell. Here, we describe the immunogenicity of three unique SARS-CoV-2 rAd5 vaccine candidates and their efficacy following viral challenge in non-human primates (NHPs).
View Article and Find Full Text PDFCurr Opin Immunol
October 2023
Oral vaccines have a distinctive advantage of stimulating immune responses in the mucosa, where numerous pathogens gain entry and cause disease. Although various efforts have been attempted to create recombinant mucosal vaccines that provoke strong immunogenicity, the outcomes in clinical trials have been weak or inconsistent. Therefore, next-generation mucosal vaccines are needed that are more immunogenic.
View Article and Find Full Text PDFTo effectively combat emerging infections and prevent future pandemics, next generation vaccines must be developed quickly, manufactured rapidly, and most critically, administered easily. Next generation vaccines need innovative approaches that prevent infection, severe disease, and reduce community transmission of respiratory pathogens such as influenza and SARS-CoV-2. Here we review an oral vaccine tablet that can be manufactured and released in less than 16 weeks of antigen design and deployed without the need for cold chain.
View Article and Find Full Text PDFType 2 inflammation is associated with epithelial cell responses, including goblet cell hyperplasia, that promote worm expulsion during intestinal helminth infection. How these epithelial responses are regulated remains incompletely understood. Here, we show that mice deficient in the prostaglandin D2 (PGD2) receptor CRTH2 and mice with CRTH2 deficiency only in nonhematopoietic cells exhibited enhanced worm clearance and intestinal goblet cell hyperplasia following infection with the helminth Nippostrongylus brasiliensis.
View Article and Find Full Text PDFIn the last twenty years an impressive body of evidence in diverse inflammatory animal disease models and human tissues, has established polyunsaturated fatty acids (PUFA) derived specialized-pro-resolving mediators (SPM), as essential mediators for controlling acute inflammation, immune responses, wound healing and for resolving acute inflammation in many non-ocular tissues. SPM pathways and receptors are highly expressed in the ocular surface where they regulate wound healing, nerve regeneration, innate immunity and sex-specific regulation of auto-immune responses. Recent evidence indicates that in the eye these resident SPM networks are important for maintaining ocular surface health and immune homeostasis.
View Article and Find Full Text PDFFerroptosis is a death program executed via selective oxidation of arachidonic acid-phosphatidylethanolamines (AA-PE) by 15-lipoxygenases. In mammalian cells and tissues, ferroptosis has been pathogenically associated with brain, kidney, and liver injury/diseases. We discovered that a prokaryotic bacterium, Pseudomonas aeruginosa, that does not contain AA-PE can express lipoxygenase (pLoxA), oxidize host AA-PE to 15-hydroperoxy-AA-PE (15-HOO-AA-PE), and trigger ferroptosis in human bronchial epithelial cells.
View Article and Find Full Text PDFThe opportunistic pathogen Pseudomonas aeruginosa colonizes the lungs of susceptible individuals by deploying virulence factors targeting host defenses. The secreted factor Cif (cystic fibrosis transmembrane conductance regulator inhibitory factor) dysregulates the endocytic recycling of CFTR and thus reduces CFTR abundance in host epithelial membranes. We have postulated that the decrease in ion secretion mediated by Cif would slow mucociliary transport and decrease bacterial clearance from the lungs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2017
Recurrent Pseudomonas aeruginosa infections coupled with robust, damaging neutrophilic inflammation characterize the chronic lung disease cystic fibrosis (CF). The proresolving lipid mediator, 15-epi lipoxin A (15-epi LXA), plays a critical role in limiting neutrophil activation and tissue inflammation, thus promoting the return to tissue homeostasis. Here, we show that a secreted P.
View Article and Find Full Text PDFPseudomonas aeruginosa is an opportunistic pathogen that can cause nosocomial and chronic infections in immunocompromised patients. P. aeruginosa secretes a lipoxygenase, LoxA, but the biological role of this enzyme is currently unknown.
View Article and Find Full Text PDFClinical observations link respiratory virus infection and Pseudomonas aeruginosa colonization in chronic lung disease, including cystic fibrosis (CF) and chronic obstructive pulmonary disease. The development of P. aeruginosa into highly antibiotic-resistant biofilm communities promotes airway colonization and accounts for disease progression in patients.
View Article and Find Full Text PDFIg-binding proteins are employed by a variety of organisms to evade the immune system. To our knowledge, we now report for the first time that meningococcal strains from several capsular groups exhibit Ig-binding activity that is dependent on human serum factors. A protein mediating Ig binding was identified as T and B cell-stimulating protein B (TspB) by immunoprecipitation and by mass spectroscopic analysis of tryptic peptides.
View Article and Find Full Text PDFAntibody-mediated complement-dependent bactericidal activity (BCA) against Neisseria meningitidis (Nm) is correlated with protection against invasive disease. Recently, we showed that murine antibodies elicited by neuraminic acid-containing polysialic acid (NeuPSA) antigens conferred protection against Nm group B (NmB) strains in an infant rat model of meningococcal bacteremia [Moe GR, Bhandari TS, Flitter BA. Vaccines containing de-N-acetyl sialic acid elicit antibodies protective against neisseria meningitidis groups B and C.
View Article and Find Full Text PDFMurine mAbs that were produced by immunization with a vaccine containing the N-propionyl derivative of Neisseria meningitidis group B (MenB) capsular polysaccharide (NPr MBPS) mediate protective responses against MenB but were not reactive with unmodified MBPS or chemically identical human polysialic acid (PSA). Recently, we showed that some of the mAbs were reactive with MBPS derivatives that contain de-N-acetyl sialic acid residues. In this study we evaluated the immunogenicity of de-N-acetyl sialic acid-containing derivatives of PSA (de-N-acetyl PSA) in mice.
View Article and Find Full Text PDFRecently, we showed that monoclonal antibodies (mAbs) that are reactive with derivatives of polysialic acid containing de-N-acetylated neuraminic acid (Neu) residues are protective against N. meningitidis group B strains (Moe et al. 2005, Infect Immun73: 2123; Flitter et al.
View Article and Find Full Text PDFLarge meningococcal group A epidemics occur periodically in the Sudan, a country within the "meningitis belt" of Sub-Saharan Africa. Immunization with meningococcal polysaccharide vaccine induces protective serum bactericidal titers but little information is available on the duration of protection. Serum samples were obtained from 20 subjects, aged 11-47 years, who resided in the Sudan, and who had participated in a meningococcal polysaccharide immunogenicity study five years earlier.
View Article and Find Full Text PDF