Urban textures of the Italian cities are peculiarly shaped by the local geography generating similarities among cities placed in different regions but comparable topographical districts. This suggested the following scientific question: can different topographies generate significant differences on the PM chemical composition at Italian urban sites that share similar geography despite being in different regions? To investigate whether such communalities can be found and are applicable at Country-scale, we propose here a novel methodological approach. A dataset comprising season-averages of PM mass concentration and chemical composition data was built, covering the decade 2005-2016 and referring to urban sites only (21 cities).
View Article and Find Full Text PDFDuring the East Antarctic International Ice Sheet Traverse (Eaiist, december 2019), in an unexplored part of the East Antarctic Plateau, snow samples were collected to expand our knowledge of the latitudinal variability of iodine, bromine and sodium as well as their relation in connection with emission processes and photochemical activation in this unexplored area. A total of 32 surface (0-5 cm) and 32 bulk (average of 1 m depth) samples were taken and analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Our results show that there is no relevant latitudinal trend for bromine and sodium.
View Article and Find Full Text PDFStarting from 1952 C.E. more than 540 atmospheric nuclear weapons tests (NWT) were conducted in different locations of the Earth.
View Article and Find Full Text PDFThe study of airborne chemical markers is crucial for identifying sources of aerosols, and their atmospheric processes of transport and transformation. The investigation of free amino acids and their differentiation between the L- and D- enantiomers are even more important to understand their sources and atmospheric fate. Aerosol samples were collected with a high-volume sampler with cascade impactor at Mario Zucchelli Station (MZS) on the coast of the Ross Sea (Antarctica) for two summer campaigns (2018/19 and 2019/20).
View Article and Find Full Text PDFAtmospheric aerosols are important drivers of Arctic climate change through aerosol-cloud-climate interactions. However, large uncertainties remain on the sources and processes controlling particle numbers in both fine and coarse modes. Here, we applied a receptor model and an explainable machine learning technique to understand the sources and drivers of particle numbers from 10 nm to 20 μm in Svalbard.
View Article and Find Full Text PDFThe characterization of the day-to-night changes of the atmospheric particle chemical and optical properties in autumn-winter (AW) and spring-summer (SS) is the main goal of this study to contribute to the characterization and understanding of the particulate matter (PM) impact on the environment and climate at one of the most vulnerable areas of the planet to climate change. To this end, PM10 and PM2.5 samples from 14 January 2016 to 5 January 2017 have been collected in Lecce, a coastal site of South-Eastern Italy (40.
View Article and Find Full Text PDFTen years of data of biogenic aerosol (methane sulfonic acid, MSA, and non-sea salt sulfate, nssSO) collected at Concordia Station in the East Antarctic plateau (75° 06' S, 123° 20' E) are interpreted as a function of the Southern Annular Mode (SAM), Chlorophyll-a concentration (Chl-a; a proxy for phytoplankton biomass), sea ice extent and area. It is possible to draw three different scenarios that link these parameters in early, middle, and late summer. In early summer, the biogenic aerosol is significantly correlated to sea ice retreats through the phytoplankton biomass increases.
View Article and Find Full Text PDFShip traffic, population, infrastructure development, and mining activities are expected to increase in the Arctic due to its rising temperatures. This is expected to produce a major impact on aerosol composition. Metals contained in atmospheric particles are powerful markers and can be extremely helpful to gain insights on the different aerosol sources.
View Article and Find Full Text PDFThe Redundancy Discrimination Analysis (RDA) and Spearman correlation coefficients were used to investigate relationships between airborne bacteria at the phylum and genus level and chemical species in winter and spring PM10 samples over Southeastern Italy. The identification of main chemical species/pollution sources that were related to and likely affected the bacterial community structure was the main goal of this work. The 16S rRNA gene metabarcoding approach was used to characterize airborne bacteria.
View Article and Find Full Text PDFA closure experiment was conducted over Svalbard by comparing Lidar measurements and optical aerosol properties calculated from aerosol vertical profiles measured using a tethered balloon. Arctic Haze was present together with Icelandic dust. Chemical analysis of filter samples, aerosol size distribution and a full set of meteorological parameters were determined at ground.
View Article and Find Full Text PDFA particulate matter (PM) source apportionment study was carried out in one of the most polluted districts of Tuscany (Italy), close to an old waste incinerator plant. Due to the high PM10 levels, an extensive field campaign was supported by the Regional Government to identify the main PM sources and quantify their contributions. PM10 daily samples were collected for one year and analysed by different techniques to obtain a complete chemical characterisation (elements, ions and carbon fractions).
View Article and Find Full Text PDFAn inductively coupled plasma sector field mass spectrometer (ICP-SFMS) was used to develop an analytical method for the fast determination of Na, Al, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Y, Mo, Cd, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Pb in Arctic size-segregated aerosol samples (PM), after microwave acidic digestion. The ICP-SFMS was coupled with a microflow nebulizer and a desolvation system for the sample introduction, which reduced the isobaric interferences due to oxides and the required volume of sample solutions, compared to the usual nebulization chamber methods. With its very low limit of detection, and taking into account the level of blanks, this method allowed the quantification of many metals in very low concentration.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
August 2017
In this paper, results on the potential toxicity of ultrafine particles (UFPs d<100nm) emitted by the combustion of logwood and pellet (hardwood and softwood) are reported. The data were collected during the TOBICUP (TOxicity of BIomass COmbustion generated Ultrafine Particles) project, carried out by a team composed of interdisciplinary research groups. The genotoxic evaluation was performed on A549 cells (human lung carcinomacells) using UFPs whose chemical composition was assessed by a suite of analytical techniques.
View Article and Find Full Text PDFAtmospheric new particle formation (NPF) and growth significantly influences climate by supplying new seeds for cloud condensation and brightness. Currently, there is a lack of understanding of whether and how marine biota emissions affect aerosol-cloud-climate interactions in the Arctic. Here, the aerosol population was categorised via cluster analysis of aerosol size distributions taken at Mt Zeppelin (Svalbard) during a 11 year record.
View Article and Find Full Text PDFAntarctic sea ice has shown an increasing trend in recent decades, but with strong regional differences from one sector to another of the Southern Ocean. The Ross Sea and the Indian sectors have seen an increase in sea ice during the satellite era (1979 onwards). Here we present a record of ssNa flux in the Talos Dome region during a 25-year period spanning from 1979 to 2003, showing that this marker could be used as a potential proxy for reconstructing the sea ice extent in the Ross Sea and Western Pacific Ocean at least for recent decades.
View Article and Find Full Text PDFIn this work we present the isotopic, chemical and dust stratigraphies of two snow pits sampled in 2013/14 at GV7 (coastal East Antarctica: 70°41' S - 158°51' E, 1950 m a.s.l.
View Article and Find Full Text PDFThis work is part of the TOBICUP (TOxicity of BIomass Combustion generated Ultrafine Particles) project which aimed at providing the composition of ultrafine particles (UFPs, i.e. particles with aerodynamic diameter, d, lower than 100nm) emitted by wood combustion and elucidating the related toxicity.
View Article and Find Full Text PDFContinuous all year-round samplings of atmospheric aerosol and surface snow at high (daily to 4-day) resolution were carried out at Dome C since 2004-05 to 2013 and nitrate records are here presented. Basing on a larger statistical data set than previous studies, results confirm that nitrate seasonal pattern is characterized by maxima during austral summer for both aerosol and surface snow, occurring in-phase with solar UV irradiance. This temporal pattern is likely due to a combination of nitrate sources and post-depositional processes whose intensity usually enhances during the summer.
View Article and Find Full Text PDFThis study aimed to collect, characterize ultrafine particles (UFP) generated from the combustion of wood pellets and logs (softwood and hardwood) and to evaluate their pro-inflammatory effects in THP-1 and A549 cells. Both cell lines responded to UFP producing interleukin-8 (IL-8), with wood log UFP being more active compared to pellet UFP. With the exception of higher effect observed with beech wood log UFP in THP-1, the ability of soft or hard woods to induce IL-8 release was similar.
View Article and Find Full Text PDFFive snow pits and five firn cores were sampled during the 2003-2004 Italian Antarctic Campaign at Talos Dome (East Antarctica), where a deep ice core (TALDICE, TALos Dome Ice CorE, 1650m depth) was drilled in 2005-2008 and analyzed for ionic content. Particular attention is spent in applying decontamination procedures to the firn cores, as core sections were stored for approximately 10years before analysis. By considering the snow pit samples to be unperturbed, the comparison with firn core samples from the same location shows that ammonium, nitrate and MSA are affected by storage post-depositional losses.
View Article and Find Full Text PDFHere we present the first direct comparison of cosmogenic (10)Be and chemical species in the period of 38-45.5 kyr BP spanning the Laschamp geomagnetic excursion from the EPICA-Dome C ice core. A principal component analysis (PCA) allowed to group different components as a function of the main sources, transport and deposition processes affecting the atmospheric aerosol at Dome C.
View Article and Find Full Text PDFRecently, the increasing interest in the understanding of global climatic changes and on natural processes related to climate yielded the development and improvement of new analytical methods for the analysis of environmental samples. The determination of trace chemical species is a useful tool in paleoclimatology, and the techniques for the analysis of ice cores have evolved during the past few years from laborious measurements on discrete samples to continuous techniques allowing higher temporal resolution, higher sensitivity and, above all, higher throughput. Two fast ion chromatographic (FIC) methods are presented.
View Article and Find Full Text PDFFrom January to December 2010, surface snow samples were collected with monthly resolution at the Concordia station (75°06'S, 123°20'E), on the Antarctic plateau, and analysed for major and trace elements in both dissolved and particulate (i.e. insoluble particles, >0.
View Article and Find Full Text PDFBiomass burning (BB) is a significant source of particulate matter (PM) in many parts of the world. Whereas numerous studies demonstrate the relevance of BB emissions in central and northern Europe, the quantification of this source has been assessed only in few cities in southern European countries. In this work, the application of Positive Matrix Factorisation (PMF) allowed a clear identification and quantification of an unexpected very high biomass burning contribution in Tuscany (central Italy), in the most polluted site of the PATOS project.
View Article and Find Full Text PDF